Вопросы с тегом «pca»

Анализ главных компонентов (PCA) - это метод линейного уменьшения размерности. Он сводит многомерный набор данных к меньшему набору построенных переменных, сохраняя как можно больше информации (как можно больше дисперсии). Эти переменные, называемые основными компонентами, являются линейными комбинациями входных переменных.

1
Почему функции R 'princomp' и 'prcomp' дают разные собственные значения?
Вы можете использовать набор данных десятиборья {FactoMineR}, чтобы воспроизвести это. Вопрос в том, почему вычисленные собственные значения отличаются от значений ковариационной матрицы. Вот собственные значения, использующие princomp: > library(FactoMineR);data(decathlon) > pr <- princomp(decathlon[1:10], cor=F) > pr$sd^2 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 1.348073e+02 2.293556e+01 9.747263e+00 1.117215e+00 3.477705e-01 1.326819e-01 Comp.7 Comp.8 …
22 r  pca 

2
Можно ли применять PCA для данных временных рядов?
Я понимаю, что анализ главных компонентов (PCA) может применяться в основном для данных поперечного сечения. Можно ли эффективно использовать PCA для данных временных рядов, указав год в качестве переменной временного ряда и нормально запустить PCA? Я обнаружил, что динамический PCA работает для данных панели, а кодирование в Stata предназначено для …
22 time-series  pca 

2
Предел оценки гребневой регрессии «единичная дисперсия» при
Рассмотрим регрессию гребня с дополнительным ограничением, требующим, чтобы имел единичную сумму квадратов (эквивалентно, единичную дисперсию); при необходимости можно предположить, что имеет единичную сумму квадратов:y^y^\hat{\mathbf y}yy\mathbf y β^∗λ=argmin{∥y−Xβ∥2+λ∥β∥2}s.t.∥Xβ∥2=1.β^λ∗=arg⁡min{‖y−Xβ‖2+λ‖β‖2}s.t.‖Xβ‖2=1.\hat{\boldsymbol\beta}_\lambda^* = \arg\min\Big\{\|\mathbf y - \mathbf X \boldsymbol \beta\|^2+\lambda\|\boldsymbol\beta\|^2\Big\} \:\:\text{s.t.}\:\: \|\mathbf X \boldsymbol\beta\|^2=1. Каков предел β^∗λβ^λ∗\hat{\boldsymbol\beta}_\lambda^* когда λ→∞λ→∞\lambda\to\infty ? Вот некоторые утверждения, которые я …

3
Спс, когда размерность больше количества образцов
Я столкнулся со сценарием, где у меня есть 10 сигналов на человека на 10 человек (таким образом, 100 выборок), содержащих 14000 точек данных (измерений), которые мне нужно передать в классификатор. Я хотел бы уменьшить размерность этих данных, и PCA, кажется, является способом сделать это. Тем не менее, мне удалось найти …

3
Странные корреляции в результатах SVD случайных данных; у них есть математическое объяснение или это ошибка LAPACK?
Я наблюдаю очень странное поведение в результате SVD случайных данных, которое я могу воспроизвести как в Matlab, так и в R. Это похоже на некоторую числовую проблему в библиотеке LAPACK; это? Я рисую выборок из мерного гауссиана с нулевым средним и единичной ковариацией: . Я собрать их в данных матрица …

4
Функциональный анализ главных компонентов (FPCA): что это такое?
Функциональный анализ главных компонентов (FPCA) - это то, на что я наткнулся и никогда не мог понять. О чем это все? См. «Обзор функционального анализа главных компонентов», 2011 г. , и я цитирую: PCA сталкивается с серьезными трудностями при анализе функциональных данных из-за «проклятия размерности» (Bellman 1961). «Проклятие размерности» происходит …

2
PCA в NumPy и Sklearn дает разные результаты
Я что-то неправильно понимаю. Это мой код используя sklearn import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition from sklearn import datasets from sklearn.preprocessing import StandardScaler pca = decomposition.PCA(n_components=3) x = np.array([ [0.387,4878, 5.42], [0.723,12104,5.25], [1,12756,5.52], [1.524,6787,3.94], ]) pca.fit_transform(x) Выход: array([[ -4.25324997e+03, -8.41288672e-01, …

4
Как спроецировать новый вектор на пространство PCA?
После выполнения анализа главных компонентов (PCA) я хочу спроецировать новый вектор на пространство PCA (т.е. найти его координаты в системе координат PCA). Я рассчитал PCA на языке R, используя prcomp. Теперь я должен быть в состоянии умножить свой вектор на матрицу вращения PCA. Должны ли главные компоненты в этой матрице …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

1
Что такое «эффект подковы» и / или «эффект арки» в PCA / анализе соответствия?
Существует много методов в экологической статистике для анализа разведочных данных многомерных данных. Это так называемые техники рукоположения. Многие из них совпадают или тесно связаны с общими методами в других областях статистики. Возможно, прототипным примером будет анализ основных компонентов (PCA). Экологи могут использовать PCA и связанные с ними методы для изучения …

2
Есть ли какое-либо преимущество SVD перед PCA?
Я знаю, как математически рассчитать PCA и SVD, и я знаю, что оба могут быть применены к регрессии линейных наименьших квадратов. Основным преимуществом SVD математически представляется то, что его можно применять к неквадратным матрицам. Оба сосредоточены на разложении матрицыПомимо упомянутого преимущества SVD, есть ли какие-либо дополнительные преимущества или идеи, предоставляемые …
20 pca  least-squares  svd 

2
Методы расчета факторных оценок и что такое матрица «коэффициентов оценки» в PCA или факторный анализ?
Насколько я понимаю, в PCA, основанном на корреляциях, мы получаем фактор (= основной компонент в данном случае) нагрузки, которые являются ничем иным, как корреляцией между переменными и факторами. Теперь, когда мне нужно сгенерировать факторные оценки в SPSS, я могу напрямую получить факторные оценки каждого респондента для каждого фактора. Я также …

3
Я получаю «скачкообразные» нагрузки в Rollapply PCA в R. Могу ли я это исправить?
У меня есть 10-дневные данные ежедневных возвратов по 28 различным валютам. Я хотел бы извлечь первый основной компонент, но вместо того, чтобы использовать PCA в течение всех 10 лет, я хочу перенести двухлетнее окно, потому что поведение валют меняется, и поэтому я хочу это отразить. Однако у меня есть серьезная …
20 r  pca 

6
PCA негауссовых данных
У меня есть пара быстрых вопросов о PCA: Предполагает ли PCA, что набор данных является гауссовским? Что происходит, когда я применяю PCA к нелинейным данным? Учитывая набор данных, процесс должен сначала нормализовать среднее значение, установить дисперсию 1, взять SVD, уменьшить ранг и, наконец, отобразить набор данных в новое пространство с …
20 pca  svd 

4
Каковы правильные значения для точности и отзыва в крайних случаях?
Точность определяется как: p = true positives / (true positives + false positives) Является ли это исправить , что, как true positivesи false positivesподход 0, точность приближается к 1? Тот же вопрос для отзыва: r = true positives / (true positives + false negatives) В настоящее время я выполняю статистический …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

1
Как LDA, метод классификации, также служит методом уменьшения размерности, как PCA
В этой статье автор связывает линейный дискриминантный анализ (LDA) с анализом главных компонентов (PCA). С моими ограниченными знаниями я не могу понять, как LDA может быть чем-то похожим на PCA. Я всегда думал, что LDA - это форма алгоритма классификации, похожая на логистическую регрессию. Я буду признателен за помощь в …

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.