Вы можете использовать набор данных десятиборья {FactoMineR}, чтобы воспроизвести это. Вопрос в том, почему вычисленные собственные значения отличаются от значений ковариационной матрицы.
Вот собственные значения, использующие princomp
:
> library(FactoMineR);data(decathlon)
> pr <- princomp(decathlon[1:10], cor=F)
> pr$sd^2
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
1.348073e+02 2.293556e+01 9.747263e+00 1.117215e+00 3.477705e-01 1.326819e-01
Comp.7 Comp.8 Comp.9 Comp.10
6.208630e-02 4.938498e-02 2.504308e-02 4.908785e-03
И то же самое, используя PCA
:
> res<-PCA(decathlon[1:10], scale.unit=FALSE, ncp=5, graph = FALSE)
> res$eig
eigenvalue percentage of variance cumulative percentage of variance
comp 1 1.348073e+02 79.659589641 79.65959
comp 2 2.293556e+01 13.552956464 93.21255
comp 3 9.747263e+00 5.759799777 98.97235
comp 4 1.117215e+00 0.660178830 99.63252
comp 5 3.477705e-01 0.205502637 99.83803
comp 6 1.326819e-01 0.078403653 99.91643
comp 7 6.208630e-02 0.036687700 99.95312
comp 8 4.938498e-02 0.029182305 99.98230
comp 9 2.504308e-02 0.014798320 99.99710
comp 10 4.908785e-03 0.002900673 100.00000
Можете ли вы объяснить мне, почему непосредственно вычисленные собственные значения отличаются от этих? (собственные векторы одинаковы):
> eigen(cov(decathlon[1:10]))$values
[1] 1.381775e+02 2.350895e+01 9.990945e+00 1.145146e+00 3.564647e-01
[6] 1.359989e-01 6.363846e-02 5.061961e-02 2.566916e-02 5.031505e-03
Кроме того, альтернативный prcomp
метод дает те же собственные значения, что и прямые вычисления:
> prc <- prcomp(decathlon[1:10])
> prc$sd^2
[1] 1.381775e+02 2.350895e+01 9.990945e+00 1.145146e+00 3.564647e-01
[6] 1.359989e-01 6.363846e-02 5.061961e-02 2.566916e-02 5.031505e-03
Почему PCA
/ princomp
и prcomp
дают разные собственные значения?
princomp
: «Обратите внимание, что при расчете по умолчанию для ковариационной матрицы используется делитель N». Страница справки для prcomp
: «В отличие от princomp, дисперсии вычисляются с помощью обычного делителя N-1».