Вопросы с тегом «unsupervised-learning»

Поиск скрытой (статистической) структуры в немаркированных данных, включая кластеризацию и извлечение признаков для уменьшения размерности.

2
Как понять сверточную сеть глубокого убеждения для классификации аудио?
В « Сверточных сетях глубокого убеждения для масштабируемого обучения без надзора иерархических представлений » Ли и соавт. др. ( PDF ) Предложены сверточные ДБН. Также метод оценивается для классификации изображений. Это звучит логично, поскольку существуют естественные локальные особенности изображения, такие как небольшие углы и края и т. Д. В статье …

1
Почему Anova () и drop1 () предоставили разные ответы для GLMM?
У меня есть GLMM формы: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Когда я использую drop1(model, test="Chi"), я получаю другие результаты, чем если бы я использовал Anova(model, type="III")из пакета автомобиля или summary(model). Последние два дают одинаковые ответы. Используя кучу сфабрикованных данных, я обнаружил, …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

1
t-SNE со смешанными непрерывными и двоичными переменными
В настоящее время я изучаю визуализацию многомерных данных с использованием t-SNE. У меня есть некоторые данные со смешанными двоичными и непрерывными переменными, и данные, похоже, слишком быстро группируют двоичные данные. Конечно, это ожидается для масштабированных (между 0 и 1) данных: евклидово расстояние всегда будет наибольшим / наименьшим между двоичными переменными. …

1
Оптимальное количество компонентов в гауссовой смеси
Таким образом, получение «идеи» об оптимальном количестве кластеров в k-средних хорошо документировано. Я нашел статью о том, как сделать это в гауссовых смесях, но не уверен, что меня это убедило, я не очень хорошо понимаю. Есть ли ... более мягкий способ сделать это?

1
Какая модель глубокого обучения может классифицировать категории, которые не являются взаимоисключающими
Примеры: у меня есть предложение в должностной инструкции: «Старший инженер Java в Великобритании». Я хочу использовать модель глубокого обучения, чтобы предсказать ее как 2 категории: English и IT jobs. Если я использую традиционную классификационную модель, она может предсказать только 1 метку с softmaxфункцией на последнем слое. Таким образом, я могу …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

2
Выбор функций для проблем кластеризации
Я пытаюсь сгруппировать разные наборы данных, используя неконтролируемые алгоритмы (кластеризация). Проблема в том, что у меня много функций (~ 500) и небольшое количество дел (200-300). До сих пор я занимался только задачами классификации, для которых я всегда отмечал данные как обучающие наборы. Там я использовал некоторый критерий (то есть random.forest.importance …

1
Невозможно заставить эту сеть автоэнкодера функционировать должным образом (со сверточным и максимальным уровнями)
Автоэнкодерные сети кажутся более хитрыми, чем обычные классификаторы MLP сетей. После нескольких попыток использования лазаньи все, что я получаю в восстановленном выводе, в чем-то напоминает размытое усреднение всех изображений базы данных MNIST без различия того, что представляет собой входная цифра. Структура сетей, которую я выбрал, представляет собой следующие каскадные слои: …

6
Как подготовить / построить функции для обнаружения аномалий (данные сетевой безопасности)
Моя цель - проанализировать сетевые журналы (например, Apache, syslog, аудит безопасности Active Directory и т. Д.), Используя кластеризацию / обнаружение аномалий для целей обнаружения вторжений. Из журналов у меня много текстовых полей, таких как IP-адрес, имя пользователя, имя хоста, порт назначения, порт источника и т. Д. (Всего 15-20 полей). Я …

4
Как выполнить многократные тесты хи-квадрат после таблицы 2 на 3?
Мой набор данных состоит из общей смертности или выживания организма в трех типах участков: на берегу, в среднем и на расстоянии от берега. Цифры в таблице ниже представляют количество сайтов. 100% Mortality 100% Survival Inshore 30 31 Midchannel 10 20 Offshore 1 10 Я хотел бы знать, является ли количество …
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.