Вопросы с тегом «scikit-learn»

Библиотека машинного обучения для Python. Используйте этот тег для любого вопроса по теме, который (a) включает scikit-learn или как критическую часть вопроса, или как ожидаемый ответ, и (b) не только о том, как использовать scikit-learn.


1
R / mgcv: Почему тензорные продукты te () и ti () производят разные поверхности?
mgcvПакет Rимеет две функции для установки взаимодействия Тензор продукта: te()и ti(). Я понимаю основное разделение труда между ними (подгонка нелинейного взаимодействия против разложения этого взаимодействия на основные эффекты и взаимодействие). Чего я не понимаю, так это почему te(x1, x2)и ti(x1) + ti(x2) + ti(x1, x2)может дать (немного) разные результаты. MWE …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

1
Функция потери биномиального отклонения Scikit
Это функция биномиального отклонения Scikit GradientBoosting, def __call__(self, y, pred, sample_weight=None): """Compute the deviance (= 2 * negative log-likelihood). """ # logaddexp(0, v) == log(1.0 + exp(v)) pred = pred.ravel() if sample_weight is None: return -2.0 * np.mean((y * pred) - np.logaddexp(0.0, pred)) else: return (-2.0 / sample_weight.sum() * np.sum(sample_weight …

1
Как мы предсказываем редкие события?
Я работаю над разработкой модели прогнозирования страхового риска. Эти модели относятся к «редким событиям», таким как прогнозирование неявки авиакомпаний, обнаружение неисправностей оборудования и т. Д. Когда я готовил свой набор данных, я пытался применить классификацию, но не смог получить полезные классификаторы из-за высокой доли отрицательных случаев. , У меня нет …

4
Анализ основных компонентов и регрессия в Python
Я пытаюсь понять, как воспроизвести в Python какую-то работу, которую я проделал в SAS. Используя этот набор данных , где мультиколлинеарность является проблемой, я хотел бы выполнить анализ основных компонентов в Python. Я смотрел на scikit-learn и statsmodels, но я не уверен, как взять их результаты и преобразовать их в …

2
Применение PCA для проверки данных в целях классификации
Недавно я узнал о замечательном PCA, и я сделал пример, изложенный в документации scikit-learn . Мне интересно знать, как я могу применить PCA к новым точкам данных для целей классификации. После визуализации PCA в двухмерной плоскости (ось x, y) я вижу, что, вероятно, могу нарисовать линию, чтобы отделить точки данных, …

1
Случайный лесной вероятностный прогноз против большинства голосов
Кажется, Scikit Learn использует вероятностный прогноз вместо большинства голосов за метод агрегации моделей без объяснения причин (1.9.2.1. Случайные леса). Есть четкое объяснение почему? Кроме того, есть ли хорошая статья или обзорная статья о различных методах агрегации моделей, которые можно использовать для рандомизации по лесам? Спасибо!

2
Выход Scikit SVM в мультиклассовой классификации всегда дает одинаковую метку
В настоящее время я использую Scikit Learn со следующим кодом: clf = svm.SVC(C=1.0, tol=1e-10, cache_size=600, kernel='rbf', gamma=0.0, class_weight='auto') а затем подгонка и прогнозирование для набора данных с 7 различными метками. Я получил странный вывод. Независимо от того, какой метод перекрестной проверки я использую, предсказанная метка в наборе валидации всегда будет …

1
Как мне включить инновационный выброс при наблюдении 48 в мою модель ARIMA?
Я работаю над набором данных. После использования некоторых методов идентификации моделей я разработал модель ARIMA (0,2,1). Я использовал detectIOфункцию в пакете TSAв R, чтобы обнаружить инновационный выброс (IO) на 48-м наблюдении за моим исходным набором данных. Как включить этот выброс в мою модель, чтобы я мог использовать его для целей …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 

1
В чем разница между решением_функции, предсказанием_процедуры и функцией предсказания для задачи логистической регрессии?
Я просматривал документацию по sklearn, но не смог понять назначение этих функций в контексте логистической регрессии. Ибо decision_functionон говорит, что это расстояние между гиперплоскостью и тестовым экземпляром. как эта конкретная информация полезна? и как это соотносится с predictи predict-probaметодами?

2
Скорректированный индекс ранда против скорректированной взаимной информации
Я пытаюсь оценить производительность кластеризации. Я читал документацию skiscit-learn по метрикам . Я не понимаю разницы между ARI и AMI. Мне кажется, что они делают одно и то же двумя разными способами. Ссылаясь на документацию: Учитывая знание базовых назначений класса истинности label_true и наших алгоритмов кластеризации для одних и тех …

3
Определение отфильтрованных объектов после выбора функции с помощью Scikit Learn.
Вот мой код для выбора метода в Python: from sklearn.svm import LinearSVC from sklearn.datasets import load_iris iris = load_iris() X, y = iris.data, iris.target X.shape (150, 4) X_new = LinearSVC(C=0.01, penalty="l1", dual=False).fit_transform(X, y) X_new.shape (150, 3) Но после получения нового X (зависимая переменная - X_new), как узнать, какие переменные удалены …

2
Реализация вложенной перекрестной проверки
Я пытаюсь выяснить, правильно ли мое понимание вложенной перекрестной проверки, поэтому я написал этот игрушечный пример, чтобы проверить, прав ли я: import operator import numpy as np from sklearn import cross_validation from sklearn import ensemble from sklearn.datasets import load_boston # set random state state = 1 # load boston dataset …

1
Могут ли случайные леса справиться с MNIST намного лучше, чем ошибка тестирования 2,8%?
Я не нашел никакой литературы по применению случайных лесов к MNIST, CIFAR, STL-10 и т. Д., Поэтому я решил попробовать их с MNIST, не зависящим от перестановок . В R я попробовал: randomForest(train$x, factor(train$y), test$x, factor(test$y), ntree=500) Это работало в течение 2 часов и получило 2,8% ошибок теста. Я также …

4
Модель истории дискретного времени (выживания) в R
Я пытаюсь вписать модель с дискретным временем в R, но я не уверен, как это сделать. Я читал, что вы можете организовать зависимую переменную в разных строках, по одной для каждого временного наблюдения, и использовать glmфункцию со ссылкой logit или cloglog. В этом смысле, у меня есть три колонки: ID, …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.