Вопросы с тегом «naive-bayes»

Наивный байесовский классификатор - это простой вероятностный классификатор, основанный на применении теоремы Байеса с сильными предположениями о независимости. Более описательным термином для базовой модели вероятности будет «модель независимых признаков».

1
Почему наивный байесовский классификатор оптимален для проигрыша 0-1?
Наивный байесовский классификатор - это классификатор, который назначает элементы xxx классу CCC на основе максимизации апостериорного P(C|x)P(C|x)P(C|x) для членства в классе и предполагает, что характеристики элементов независимы. Потеря 0-1 - это потеря, которая присваивает любой ошибочной классификации потерю «1», а потерю «0» - любой правильной классификации. Я часто читаю (1), …

3
Наивные байесовские характеристики вероятности: я должен дважды считать слова?
Я создаю прототип своей собственной модели Naive Bayes bag o 'words, и у меня возник вопрос о вычислении вероятностей характеристик. Допустим, у меня есть два класса, я просто буду использовать спам, а не спам, поскольку это то, что все используют. И давайте возьмем слово «виагра» в качестве примера. В моем …

4
Может ли прогнозируемая вероятность логистической регрессии быть интерпретирована как уверенность в классификации
Можем ли мы интерпретировать апостериорную вероятность, полученную из классификатора, который выводит прогнозируемое значение класса и вероятность (например, логистическая регрессия или наивный байесовский критерий), как некоторый вид доверительной оценки, которая присваивается этому прогнозируемому значению класса?

2
Akinator.com и Наивный байесовский классификатор
Контекст: я программист с некоторым (наполовину забытым) опытом в области статистики из университетских курсов. Недавно я наткнулся на http://akinator.com и провел некоторое время, пытаясь заставить его потерпеть неудачу. А кто не был? :) Я решил выяснить, как это может работать. После поиска в Google и прочтения соответствующих сообщений в блоге …

2
Какие вещи я могу предсказать с помощью наивного байесовского классификатора?
Я новичок в статистике (прошел только один курс колледжа), но у меня есть опыт программирования. Я только начал играть с библиотекой байесовских классификаторов для Ruby, и я ищу идеи для вещей для анализа. Прямо сейчас я возиться с категоризацией Tweet, но у вас есть какие-нибудь идеи? Что еще более важно, …

1
Какая модель глубокого обучения может классифицировать категории, которые не являются взаимоисключающими
Примеры: у меня есть предложение в должностной инструкции: «Старший инженер Java в Великобритании». Я хочу использовать модель глубокого обучения, чтобы предсказать ее как 2 категории: English и IT jobs. Если я использую традиционную классификационную модель, она может предсказать только 1 метку с softmaxфункцией на последнем слое. Таким образом, я могу …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

1
Становится ли Наивный Байес более популярным? Почему?
Это результат Google трендов, полученный для фразы «Наивный Байес» с января 2004 года по апрель 2017 года ( ссылка ). Согласно этой цифре, коэффициент поиска «Наивный байесовский» в апреле 2017 года примерно на 25% выше максимума за весь период времени. Означает ли это, что этот простой и старый метод получает …

1
Алгебраические классификаторы, больше информации?
Я прочитал алгебраические классификаторы: общий подход к быстрой перекрестной проверке, онлайн-обучению и параллельному обучению, и был поражен эффективностью производных алгоритмов. Тем не менее, кажется, что помимо наивных байесовских (и GBM), не так много алгоритмов, адаптированных к этой структуре. Есть ли другие документы, которые работали над различными классификаторами? (SVM, случайные леса)

2
Рассчитать кривую ROC для данных
Итак, у меня есть 16 испытаний, в которых я пытаюсь идентифицировать человека по биометрической характеристике, используя расстояние Хэмминга. Мой порог установлен на 3,5. Мои данные ниже, и только пробная версия 1 является истинным положительным результатом: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 6 0.47 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.