Вопросы с тегом «multivariate-analysis»

Анализирует, когда одновременно анализируется более одной переменной, и эти переменные являются либо зависимыми (ответными), либо единственными в анализе. Это можно сравнить с «множественным» или «многовариантным» анализом, который подразумевает более одной (независимой) предикторной переменной.

5
Какие навыки необходимы для проведения крупномасштабного статистического анализа?
Многие статистические работы требуют опыта работы с крупномасштабными данными. Какие виды статистических и вычислительных навыков понадобятся для работы с большими наборами данных. Например, как насчет построения регрессионных моделей с учетом набора данных с 10 миллионами выборок?

13
Каков наилучший способ выявления выбросов в многомерных данных?
Предположим, у меня есть большой набор многомерных данных, по крайней мере, с тремя переменными. Как я могу найти выбросы? Парные диаграммы рассеяния не будут работать, поскольку выброс может существовать в трех измерениях, который не является выбросом ни в одном из двухмерных подпространств. Я имею в виду не проблему регрессии, а …

3
Возможно ли иметь пару гауссовых случайных величин, для которых совместное распределение не является гауссовым?
Кто-то задал мне этот вопрос на собеседовании, и я ответил, что их совместное распространение всегда гауссовское. Я думал, что всегда могу написать двумерный гауссовский язык со своими средствами, дисперсией и ковариациями. Мне интересно, может ли быть случай, когда совместная вероятность двух гауссианов не является гауссовой?

3
Пример: регрессия LASSO с использованием glmnet для двоичного результата
Я начинаю баловаться с использованием glmnetс LASSO регрессией , где мой результат представляет интерес дихотомический. Я создал небольшой фрейм данных ниже: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- c(0.86, 0.45, 0.99, 0.84, 0.85, …
78 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

2
Многофакторная множественная регрессия в R
У меня есть 2 зависимые переменные (DV), на каждую из которых может влиять набор из 7 независимых переменных (IV). DV являются непрерывными, в то время как набор IV состоит из смеси непрерывных и двоично-закодированных переменных. (В коде ниже непрерывные переменные пишутся заглавными буквами, а двоичные переменные строчными.) Цель исследования - …

2
Какова взаимосвязь между независимым компонентным анализом и факторным анализом?
Я новичок в независимом компонентном анализе (ICA) и имею только элементарное понимание метода. Мне кажется, что ICA похож на Факторный анализ (FA) с одним исключением: ICA предполагает, что наблюдаемые случайные величины являются линейной комбинацией независимых компонентов / факторов, которые не являются гауссовыми, тогда как классическая модель FA предполагает, что наблюдаемые …

5
Является ли корректной корректировка значений p в множественной регрессии для множественных сравнений?
Предположим, что вы - исследователь в области социальных наук / эконометрик и пытаетесь найти соответствующие предикторы спроса на услугу. У вас есть 2 итоговые / зависимые переменные, описывающие спрос (используя сервис да / нет и количество случаев). У вас есть 10 предикторов / независимых переменных, которые теоретически могут объяснить спрос …

3
Какова интуиция за условным распределением Гаусса?
Предположим, что . Тогда условное распределение условии, что является многомерным, обычно распределяется со средним:X∼N2(μ,Σ)X∼N2(μ,Σ)\mathbf{X} \sim N_{2}(\mathbf{\mu}, \mathbf{\Sigma})X1X1X_1X2=x2X2=x2X_2 = x_2 E[P(X1|X2=x2)]=μ1+σ12σ22(x2−μ2)E[P(X1|X2=x2)]=μ1+σ12σ22(x2−μ2) E[P(X_1 | X_2 = x_2)] = \mu_1+\frac{\sigma_{12}}{\sigma_{22}}(x_2-\mu_2) и дисперсия:Var[P(X1|X2=x2)]=σ11−σ212σ22Var[P(X1|X2=x2)]=σ11−σ122σ22{\rm Var}[P(X_1 | X_2 = x_2)] = \sigma_{11}-\frac{\sigma_{12}^{2}}{\sigma_{22}} Имеет смысл, что дисперсия будет уменьшаться, поскольку у нас больше информации. Но какова интуиция …

3
Интерпретация логарифмически преобразованного предиктора и / или ответа
Мне интересно, имеет ли это значение при интерпретации того, являются ли логически преобразованными только зависимые, как зависимые, так и независимые, или только независимые переменные. Рассмотрим случай log(DV) = Intercept + B1*IV + Error Я могу интерпретировать IV как процентное увеличение, но как это меняется, когда у меня есть log(DV) = …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

5
Чем оценки склонности отличаются от добавления ковариат в регрессии, и когда они предпочтительнее последней?
Я признаю, что я относительно новичок в оценках предрасположенности и причинного анализа. Одна вещь, которая не очевидна для меня как новичка, заключается в том, как «балансировка» с использованием показателей склонности математически отличается от того, что происходит, когда мы добавляем ковариаты в регрессию? Чем отличается операция и почему она (или она) …

1
PCA и анализ соответствия в их отношении к Biplot
Биплот часто используется для отображения результатов анализа основных компонентов (и связанных с ним методов). Это двойная или наложенная диаграмма рассеяния, показывающая загрузки компонентов и оценки компонентов одновременно. Сегодня @amoeba сообщил мне, что он дал ответ, отходящий от моего комментария, на вопрос, который спрашивает о том, как создаются / масштабируются координаты …

3
Почему существует разница между ручным вычислением 95-процентного доверительного интервала и использованием функции confint () в R?
Дорогие, я заметил нечто странное, что не могу объяснить, не так ли? В итоге: ручной подход к вычислению доверительного интервала в модели логистической регрессии и функция R confint()дают разные результаты. Я проходил Прикладную логистическую регрессию Хосмера и Лемешоу (2-е издание). В 3-й главе приведен пример расчета отношения шансов и 95% …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 

7
Есть ли общепринятое определение медианы образца на плоскости или более упорядоченных пространств?
Если так, то? Если нет, то почему? Для выборки на линии медиана минимизирует общее абсолютное отклонение. Казалось бы, естественно расширить определение до R2 и т. Д., Но я никогда не видел его. Но потом я уже давно на левом поле.

5
Как работать с иерархическими / вложенными данными в машинном обучении
Я объясню мою проблему на примере. Предположим, вы хотите предсказать доход человека с учетом некоторых атрибутов: {Возраст, Пол, Страна, Регион, Город}. У вас есть тренировочный набор данных, как так train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
СВД коррелированной матрицы должен быть аддитивным, но не
Я просто пытаюсь воспроизвести утверждение, сделанное в следующей статье « Поиск коррелированных бикластеров по данным экспрессии генов» : Предложение 4. Если . тогда мы имеем:XIJ=RICTJXIJ=RICJTX_{IJ}=R_{I}C^{T}_{J} я. Если - идеальный бикластер с аддитивной моделью, то - идеальный бикластер с корреляцией по столбцам; II. Если - идеальный бикластер с аддитивной моделью, то …

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.