Вопросы с тегом «maximum-likelihood»

метод оценки параметров статистической модели путем выбора значения параметра, оптимизирующего вероятность наблюдения данной выборки.

11
Оценка максимального правдоподобия (MLE) в терминах непрофессионала
Может ли кто-нибудь объяснить мне подробно об оценке максимального правдоподобия (MLE) в терминах непрофессионала? Я хотел бы знать основную концепцию, прежде чем перейти к математическому выводу или уравнению.

3
Что такое «ограниченная максимальная вероятность» и когда ее следует использовать?
Я прочитал в реферате этой статьи, что: «Процедура максимального правдоподобия (ML) в Hartley aud Rao модифицируется путем адаптации преобразования Паттерсона и Томпсона, которое делит нормальность правдоподобия на две части, одна из которых не имеет фиксированных эффектов. Максимизация этой части дает то, что называется ограниченным максимальным правдоподобием (REML) оценки ". Я …

8
Генерация случайной величины с определенной корреляцией с существующей переменной
Для исследования моделирования я должен генерировать случайные переменные , которые показывают prefined (населения) корреляцию с существующей переменной .YYY Я посмотрел на Rпакеты copulaи CDVineкоторые могут производить случайные многомерные распределения с заданной структурой зависимостей. Однако невозможно зафиксировать одну из результирующих переменных в существующей переменной. Любые идеи и ссылки на существующие функции …

7
Примеры, где метод моментов может превзойти максимальную вероятность в маленьких выборках?
Оценки максимального правдоподобия (MLE) асимптотически эффективны; мы видим практический результат в том, что они часто работают лучше, чем оценки методом моментов (MoM) (когда они различаются), даже при небольших размерах выборки Здесь «лучше чем» означает то, что обычно имеет меньшую дисперсию, когда оба несмещены, и, как правило, меньше среднеквадратичная ошибка (MSE) …


9
Расширенные рекомендации по статистике книг
На этом сайте есть несколько веток для рекомендаций по вводной статистике и машинному обучению, но я ищу текст по расширенной статистике, в том числе в порядке приоритета: максимальная вероятность, обобщенные линейные модели, анализ главных компонентов, нелинейные модели . Я пробовал Статистические Модели AC Davison, но, честно говоря, мне пришлось записать …

2
Основной вопрос о информационной матрице Фишера и связи с гессианскими и стандартными ошибками
Хорошо, это довольно простой вопрос, но я немного запутался. В своей диссертации я пишу: Стандартные ошибки могут быть найдены путем вычисления обратного корня квадратного из диагональных элементов (наблюдаемой) информационной матрицы Фишера: Так как команда оптимизации в R сводитминимуму-журналл(наблюдаемые) Фишера Информационная матрица может быть найдена путем вычисления обратной гессианом: Я(μ,сг2)=Н-1sμ^, σ^2= …


4
Почему мы минимизируем отрицательную вероятность, если она эквивалентна максимизации вероятности?
Этот вопрос меня давно озадачил. Я понимаю использование 'log' в максимизации вероятности, поэтому я не спрашиваю о 'log'. Мой вопрос таков: поскольку максимизация логарифмической вероятности эквивалентна минимизации «отрицательной логарифмической вероятности» (NLL), почему мы изобрели эту NLL? Почему бы нам не использовать «положительную вероятность» все время? При каких обстоятельствах предпочтение отдается …

2
Что говорит обратная ковариационная матрица о данных? (Наглядно)
Меня интересует природа Σ−1Σ−1\Sigma^{-1} . Кто-нибудь может сказать что-то интуитивное о том, «Что Σ−1Σ−1\Sigma^{-1} говорит о данных?» Редактировать: Спасибо за ответы Пройдя несколько отличных курсов, я бы хотел добавить несколько моментов: Это мера информации, т. Е. xTΣ−1xxTΣ−1xx^T\Sigma^{-1}x это количество информации по направлению xxx . Двойственность: Поскольку положительно определен, как и …

2
Интуиция позади, почему парадокс Штейна применим только в измерениях
Пример Стейна показывает, что оценка максимального правдоподобия nnn нормально распределенных переменных со средними значениями μ1,…,μnμ1,…,μn\mu_1,\ldots,\mu_n и дисперсиями 111 недопустима (при функции квадрата потерь) тогда и только тогда, когда n≥3n≥3n\ge 3 . Для ясного доказательства см. Первую главу «Вывод в крупном масштабе: эмпирические байесовские методы оценки, тестирования и прогнозирования » Брэдли …

3
Интерпретация логарифмически преобразованного предиктора и / или ответа
Мне интересно, имеет ли это значение при интерпретации того, являются ли логически преобразованными только зависимые, как зависимые, так и независимые, или только независимые переменные. Рассмотрим случай log(DV) = Intercept + B1*IV + Error Я могу интерпретировать IV как процентное увеличение, но как это меняется, когда у меня есть log(DV) = …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

8
Все модели бесполезны? Возможна ли какая-то точная модель - или полезная?
Этот вопрос был в моей голове более месяца. Выпуск Amstat News за февраль 2015 года содержит статью профессора Беркли Марка ван дер Лаана, которая ругает людей за использование неточных моделей. Он утверждает, что при использовании моделей статистика становится искусством, а не наукой. По его словам, всегда можно использовать «точную модель», …

2
Метод максимального правдоподобия и метод наименьших квадратов
В чем основное различие между оценкой максимального правдоподобия (MLE) и оценкой наименьших квадратов (LSE)? Почему мы не можем использовать MLE для прогнозирования значений в линейной регрессии и наоборот?Yyy Любая помощь по этой теме будет принята с благодарностью.

1
Почему glmer не достигает максимальной вероятности (что подтверждается применением дополнительной общей оптимизации)?
Численно получить MLE из GLMM сложно, и на практике, я знаю, мы не должны использовать оптимизацию методом грубой силы (например, используя optimпростой способ). Но для моих собственных образовательных целей я хочу попробовать, чтобы убедиться, что я правильно понимаю модель (см. Код ниже). Я обнаружил, что всегда получаю противоречивые результаты glmer(). …

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.