Вопросы с тегом «elastic-net»

Метод регуляризации для регрессионных моделей, который сочетает в себе штрафы за лассо и за регрессию гребня.

1
LARS против координатного спуска для лассо
Каковы плюсы и минусы использования LARS [1] по сравнению с использованием координатного спуска для подбора L1-регуляризованной линейной регрессии? Я в основном заинтересован в аспектах производительности (мои проблемы, как правило, Nисчисляются сотнями тысяч и p<20). Однако, любые другие идеи также будут оценены. редактировать: так как я разместил вопрос, chl любезно указал …

1
Различия между PROC Mixed и lme / lmer в R - степени свободы
Примечание: этот вопрос является репостом, так как мой предыдущий вопрос пришлось удалить по юридическим причинам. Сравнивая PROC MIXED из SAS с функцией lmeиз nlmeпакета в R, я наткнулся на некоторые довольно запутанные различия. Более конкретно, степени свободы в разных тестах различаются между PROC MIXEDи lme, и я задавался вопросом, почему. …
12 r  mixed-model  sas  degrees-of-freedom  pdf  unbiased-estimator  distance-functions  functional-data-analysis  hellinger  time-series  outliers  c++  relative-risk  absolute-risk  rare-events  regression  t-test  multiple-regression  survival  teaching  multiple-regression  regression  self-study  t-distribution  machine-learning  recommender-system  self-study  binomial  standard-deviation  data-visualization  r  predictive-models  pearson-r  spearman-rho  r  regression  modeling  r  categorical-data  data-visualization  ggplot2  many-categories  machine-learning  cross-validation  weka  microarray  variance  sampling  monte-carlo  regression  cross-validation  model-selection  feature-selection  elastic-net  distance-functions  information-theory  r  regression  mixed-model  random-effects-model  fixed-effects-model  dataset  data-mining 


2
Почему регрессия гребня не может обеспечить лучшую интерпретируемость, чем LASSO?
У меня уже есть представление о плюсах и минусах регрессии гребня и LASSO. Для LASSO штрафной член L1 даст вектор разреженного коэффициента, который можно рассматривать как метод выбора признаков. Тем не менее, существуют некоторые ограничения для LASSO. Если функции имеют высокую корреляцию, LASSO выберет только одну из них. Кроме того, …

3
Лассо против адаптивного Лассо
LASSO и адаптивный LASSO - это разные вещи, верно? (Для меня штрафы выглядят по-другому, но я просто проверяю, что я что-то упускаю.) Когда вы вообще говорите об эластичной сетке, это особый случай LASSO или адаптивный LASSO? Что делает пакет glmnet, если вы выберете alpha = 1? Адаптивный LASSO работает в …

2
Показана эквивалентность между
По ссылкам Книга 1 , Книга 2 и бумага . Было упомянуто, что существует эквивалентность между регуляризованной регрессией (Ridge, LASSO и Elastic Net) и их формулами ограничения. Я также посмотрел на Cross Validated 1 и Cross Validated 2 , но я не вижу четкого ответа, демонстрирующего эту эквивалентность или логику. …

1
Разница между ElasticNet в Scikit-Learn Python и Glmnet в R
Кто-нибудь пытался проверить, дает ли соответствие модели Elastic Net ElasticNetв Scikit-Learn в Python и glmnetR в одном наборе данных одинаковые арифметические результаты? Я экспериментировал со многими комбинациями параметров (поскольку две функции различаются значениями по умолчанию, которые они передают аргументам), а также масштабировал данные, но, похоже, ничто не дает одинаковую модель …

2
Каковы некоторые из наиболее важных «ранних работ» по методам регуляризации?
В нескольких ответах, которые я видел, пользователи CrossValidated предлагают OP найти ранние статьи о Lasso, Ridge и Elastic Net. Для потомков, каковы основополагающие работы в Lasso, Ridge и Elastic Net?

1
Репликация результатов для линейной регрессии glmnet с использованием универсального оптимизатора
Как говорится в заголовке, я пытаюсь воспроизвести результаты из glmnet linear, используя оптимизатор LBFGS из библиотеки lbfgs. Этот оптимизатор позволяет нам добавлять член регуляризатора L1, не беспокоясь о дифференцируемости, если наша целевая функция (без члена регуляризатора L1) выпуклая. minβ∈Rp12n∥β0+Xβ−y∥22+αλ∥β∥1+12(1−α)λ∥β∥22minβ∈Rp12n‖β0+Xβ−y‖22+αλ‖β‖1+12(1−α)λ‖β‖22\min_{\beta \in \mathbb{R}^p} \frac{1}{2n}\Vert \beta_0 + X\beta - y \Vert_2^2 + \alpha …

3
Путаница, связанная с эластичной сеткой
Я читал эту статью, связанную с эластичной сеткой. Они говорят, что они используют эластичную сеть, потому что, если мы просто используем Лассо, это имеет тенденцию выбирать только один предиктор среди предикатов, которые сильно коррелируют. Но разве это не то, что мы хотим. Я имею в виду, что это избавляет нас …

1
Методы наказания за категориальные данные: объединение уровней в фактор
Наказанные модели могут использоваться для оценки моделей, в которых количество параметров равно или даже превышает размер выборки. Такая ситуация может возникнуть в лог-линейных моделях больших разреженных таблиц категориальных данных или данных подсчета. В этих настройках часто также желательно или полезно сворачивать таблицы, комбинируя уровни фактора, где эти уровни не различимы …

2
Рассчитать кривую ROC для данных
Итак, у меня есть 16 испытаний, в которых я пытаюсь идентифицировать человека по биометрической характеристике, используя расстояние Хэмминга. Мой порог установлен на 3,5. Мои данные ниже, и только пробная версия 1 является истинным положительным результатом: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 6 0.47 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.