Как говорится в заголовке, я пытаюсь воспроизвести результаты из glmnet linear, используя оптимизатор LBFGS из библиотеки lbfgs
. Этот оптимизатор позволяет нам добавлять член регуляризатора L1, не беспокоясь о дифференцируемости, если наша целевая функция (без члена регуляризатора L1) выпуклая.
Приведенный ниже код определяет функцию, а затем включает тест для сравнения результатов. Как вы можете видеть, результаты приемлемы, когда alpha = 1
, но они далеки от значений alpha < 1.
. Ошибка ухудшается с переходом alpha = 1
к alpha = 0
, как показано на следующем графике («метрика сравнения» - это среднее евклидово расстояние между оценками параметров glmnet и lbfgs для заданного пути регуляризации).
Хорошо, вот код Я добавил комментарии, где это возможно. Мой вопрос: почему мои результаты отличаются от результатов glmnet
для значений alpha < 1
? Это явно связано с термином регуляризации L2, но, насколько я могу судить, я реализовал этот термин именно так, как описано в статье. Любая помощь приветствуется!
library(lbfgs)
linreg_lbfgs <- function(X, y, alpha = 1, scale = TRUE, lambda) {
p <- ncol(X) + 1; n <- nrow(X); nlambda <- length(lambda)
# Scale design matrix
if (scale) {
means <- colMeans(X)
sds <- apply(X, 2, sd)
sX <- (X - tcrossprod(rep(1,n), means) ) / tcrossprod(rep(1,n), sds)
} else {
means <- rep(0,p-1)
sds <- rep(1,p-1)
sX <- X
}
X_ <- cbind(1, sX)
# loss function for ridge regression (Sum of squared errors plus l2 penalty)
SSE <- function(Beta, X, y, lambda0, alpha) {
1/2 * (sum((X%*%Beta - y)^2) / length(y)) +
1/2 * (1 - alpha) * lambda0 * sum(Beta[2:length(Beta)]^2)
# l2 regularization (note intercept is excluded)
}
# loss function gradient
SSE_gr <- function(Beta, X, y, lambda0, alpha) {
colSums(tcrossprod(X%*%Beta - y, rep(1,ncol(X))) *X) / length(y) + # SSE grad
(1-alpha) * lambda0 * c(0, Beta[2:length(Beta)]) # l2 reg grad
}
# matrix of parameters
Betamat_scaled <- matrix(nrow=p, ncol = nlambda)
# initial value for Beta
Beta_init <- c(mean(y), rep(0,p-1))
# parameter estimate for max lambda
Betamat_scaled[,1] <- lbfgs(call_eval = SSE, call_grad = SSE_gr, vars = Beta_init,
X = X_, y = y, lambda0 = lambda[2], alpha = alpha,
orthantwise_c = alpha*lambda[2], orthantwise_start = 1,
invisible = TRUE)$par
# parameter estimates for rest of lambdas (using warm starts)
if (nlambda > 1) {
for (j in 2:nlambda) {
Betamat_scaled[,j] <- lbfgs(call_eval = SSE, call_grad = SSE_gr, vars = Betamat_scaled[,j-1],
X = X_, y = y, lambda0 = lambda[j], alpha = alpha,
orthantwise_c = alpha*lambda[j], orthantwise_start = 1,
invisible = TRUE)$par
}
}
# rescale Betas if required
if (scale) {
Betamat <- rbind(Betamat_scaled[1,] -
colSums(Betamat_scaled[-1,]*tcrossprod(means, rep(1,nlambda)) / tcrossprod(sds, rep(1,nlambda)) ), Betamat_scaled[-1,] / tcrossprod(sds, rep(1,nlambda)) )
} else {
Betamat <- Betamat_scaled
}
colnames(Betamat) <- lambda
return (Betamat)
}
# CODE FOR TESTING
# simulate some linear regression data
n <- 100
p <- 5
X <- matrix(rnorm(n*p),n,p)
true_Beta <- sample(seq(0,9),p+1,replace = TRUE)
y <- drop(cbind(1,X) %*% true_Beta)
library(glmnet)
# function to compare glmnet vs lbfgs for a given alpha
glmnet_compare <- function(X, y, alpha) {
m_glmnet <- glmnet(X, y, nlambda = 5, lambda.min.ratio = 1e-4, alpha = alpha)
Beta1 <- coef(m_glmnet)
Beta2 <- linreg_lbfgs(X, y, alpha = alpha, scale = TRUE, lambda = m_glmnet$lambda)
# mean Euclidean distance between glmnet and lbfgs results
mean(apply (Beta1 - Beta2, 2, function(x) sqrt(sum(x^2))) )
}
# compare results
alpha_seq <- seq(0,1,0.2)
plot(alpha_seq, sapply(alpha_seq, function(alpha) glmnet_compare(X,y,alpha)), type = "l", ylab = "Comparison metric")
@ hxd1011 Я попробовал ваш код, вот несколько тестов (я сделал несколько незначительных изменений, чтобы соответствовать структуре glmnet - обратите внимание, мы не упорядочиваем член перехвата, и функции потерь должны масштабироваться). Это для alpha = 0
, но вы можете попробовать любой alpha
- результаты не совпадают.
rm(list=ls())
set.seed(0)
# simulate some linear regression data
n <- 1e3
p <- 20
x <- matrix(rnorm(n*p),n,p)
true_Beta <- sample(seq(0,9),p+1,replace = TRUE)
y <- drop(cbind(1,x) %*% true_Beta)
library(glmnet)
alpha = 0
m_glmnet = glmnet(x, y, alpha = alpha, nlambda = 5)
# linear regression loss and gradient
lr_loss<-function(w,lambda1,lambda2){
e=cbind(1,x) %*% w -y
v= 1/(2*n) * (t(e) %*% e) + lambda1 * sum(abs(w[2:(p+1)])) + lambda2/2 * crossprod(w[2:(p+1)])
return(as.numeric(v))
}
lr_loss_gr<-function(w,lambda1,lambda2){
e=cbind(1,x) %*% w -y
v= 1/n * (t(cbind(1,x)) %*% e) + c(0, lambda1*sign(w[2:(p+1)]) + lambda2*w[2:(p+1)])
return(as.numeric(v))
}
outmat <- do.call(cbind, lapply(m_glmnet$lambda, function(lambda)
optim(rnorm(p+1),lr_loss,lr_loss_gr,lambda1=alpha*lambda,lambda2=(1-alpha)*lambda,method="L-BFGS")$par
))
glmnet_coef <- coef(m_glmnet)
apply(outmat - glmnet_coef, 2, function(x) sqrt(sum(x^2)))
lbfgs
и orthantwise_c
когда alpha = 1
решение почти такое же, как в случае glmnet
. Это связано со стороной регуляризации L2, то есть когда alpha < 1
. Я думаю, что внесу какое-то изменение в определение SSE
и SSE_gr
должен исправить это, но я не уверен, какой должна быть модификация - насколько я знаю, эти функции определены точно так, как описано в статье glmnet.
lbfgs
поднимает вопрос обorthantwise_c
аргументе относительноglmnet
эквивалентности.