Вопросы с тегом «conjugate-prior»

Априорное распределение в байесовской статистике, которое в сочетании с вероятностью дает апостериорное распределение из того же семейства распределений.

2
Почему распределение Дирихле является приоритетным для многочленного распределения?
В алгоритме модели темы LDA я видел это предположение. Но я не знаю, почему выбрал дистрибутив Дирихле? Я не знаю, можем ли мы использовать равномерное распределение по многочлену в паре?


4
Может ли кто-нибудь объяснить сопряженные приоры в простейших терминах?
Некоторое время я пытался понять идею сопряженных априорных значений в байесовской статистике, но я просто не понимаю ее. Может ли кто-нибудь объяснить идею в простейших возможных терминах, возможно, используя в качестве примера «априор Гаусса»?

3
Наличие сопряженного априора: глубокая собственность или математическая случайность?
Некоторые дистрибутивы имеют сопряженные приоры, а некоторые нет. Это различие просто случайность? То есть вы занимаетесь математикой, и она работает так или иначе, но на самом деле она не говорит вам ничего важного о распределении, кроме самого факта? Или наличие или отсутствие сопряженного априора отражает более глубокое свойство распределения? Распространяются …

3
Байесовское обновление с новыми данными
Как мы можем вычислить апостериор с предшествующим N ~ (a, b) после наблюдения n точек данных? Я предполагаю, что мы должны вычислить среднее значение выборки и дисперсию точек данных и выполнить какое-то вычисление, которое объединяет апостериор с предыдущим, но я не совсем уверен, как выглядит формула комбинации.

1
Существует ли сопряженный априор для распределения Лапласа?
Существует ли сопряженный априор для распределения Лапласа ? Если нет, то есть ли известное выражение в замкнутой форме, аппроксимирующее апостериорный для параметров распределения Лапласа? Я довольно много гуглил, но безуспешно, поэтому мое текущее предположение - «нет» в ответах на вопросы выше ...

2
Оправдание для сопряженного приора?
Помимо удобства использования, есть ли какое-либо эпистемическое обоснование (математическое, философское, эвристическое и т. Д.) Для использования сопряженных априорных значений? Или в большинстве случаев это достаточно хорошее приближение и делает вещи намного проще?

2
Какие параметры есть у Wishart-Wishart posterior?
При выводе матрицы точности ΛΛ\boldsymbol{\Lambda} нормального распределения, используемой для создания NNN D-мерных векторов, x1,..,xNx1,..,xN\mathbf{x_1},..,\mathbf{x_N} xi∼N(μ,Λ−1)xi∼N(μ,Λ−1)\begin{align} \mathbf{x_i} &\sim \mathcal{N}(\boldsymbol{\mu, \Lambda^{-1}}) \\ \end{align} мы обычно помещаем приоритет Wishart перед ΛΛ\boldsymbol{\Lambda} так как распределение Wishart является сопряженным предшествующим для исключение многомерного нормального распределения с известным средним и неизвестной дисперсией: Λ∼W(υ,Λ0)Λ∼W(υ,Λ0)\begin{align} \mathbf{\Lambda} &\sim \mathcal{W}(\upsilon, …

2
Байесовский оценщик невосприимчив к смещению отбора
Являются ли оценки Байеса невосприимчивыми к смещению отбора? В большинстве работ, в которых обсуждаются оценки в высоком измерении, например, данные о последовательности всего генома, часто возникает проблема смещения отбора. Смещение выбора обусловлено тем фактом, что, хотя у нас есть тысячи потенциальных предикторов, будет выбрано лишь немногие, и для избранных будет …

3
Понимание бета-конъюгата перед байесовским выводом о частоте
Ниже приведен отрывок из «Болстадского введения в байесовскую статистику» . Для всех вас, экспертов, это может быть тривиально, но я не понимаю, как автор приходит к выводу, что нам не нужно делать какую-либо интеграцию для вычисления апостериорной вероятности для некоторого значения . Я понимаю второе выражение, которое представляет собой пропорциональность …

1
Какая модель глубокого обучения может классифицировать категории, которые не являются взаимоисключающими
Примеры: у меня есть предложение в должностной инструкции: «Старший инженер Java в Великобритании». Я хочу использовать модель глубокого обучения, чтобы предсказать ее как 2 категории: English и IT jobs. Если я использую традиционную классификационную модель, она может предсказать только 1 метку с softmaxфункцией на последнем слое. Таким образом, я могу …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.