Вопросы с тегом «generalized-linear-model»

Обобщение линейной регрессии, учитывающее нелинейные отношения с помощью «функции связи» и дисперсии отклика, зависящей от прогнозируемого значения. (Не путать с «общей линейной моделью», которая расширяет обычную линейную модель до общей ковариационной структуры и многомерного отклика.)

10
Разница между логитовой и пробитной моделями
В чем разница между моделью Logit и Probit ? Мне больше интересно знать, когда использовать логистическую регрессию, а когда использовать Probit. Если есть какая-либо литература, которая определяет это, используя R , это также было бы полезно.

4
Диагностические участки для подсчета регрессии
Какие диагностические графики (и, возможно, формальные тесты) вы считаете наиболее информативными для регрессий, где результат представляет собой переменную счета? Я особенно заинтересован в пуассоновских и отрицательных биномиальных моделях, а также в аналогах с нулевой раздувкой и препятствием каждой из них. Большинство источников, которые я обнаружил, просто наносят графики остатков в …

4
Когда использовать гамма GLM?
Гамма-распределение может принимать довольно широкий диапазон форм, и, учитывая связь между средним и дисперсией через два его параметра, оно кажется подходящим для работы с гетероскедастичностью в неотрицательных данных таким образом, что лог-преобразованный OLS может не обойтись без WLS или какой-либо гетероскедастичности, совместимой с оценкой VCV. Я бы больше использовал его …

3
Пример: регрессия LASSO с использованием glmnet для двоичного результата
Я начинаю баловаться с использованием glmnetс LASSO регрессией , где мой результат представляет интерес дихотомический. Я создал небольшой фрейм данных ниже: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- c(0.86, 0.45, 0.99, 0.84, 0.85, …
78 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

5
Каковы современные, легко используемые альтернативы ступенчатой ​​регрессии?
У меня есть набор данных с около 30 независимыми переменными, и я хотел бы построить обобщенную линейную модель (GLM), чтобы исследовать отношения между ними и зависимой переменной. Я знаю, что метод, которому меня учили в этой ситуации, ступенчатая регрессия, теперь считается статистическим грехом . Какие современные методы выбора модели следует …

4
В чем разница между «функцией связи» и «канонической функцией связи» для GLM
В чем разница между терминами «функция связи» и «функция канонического соединения»? Кроме того, есть ли (теоретические) преимущества использования одного над другим? Например, двоичная переменная ответа может быть смоделирована с использованием многих функций связи, таких как logit , probit и т. Д. Но логит здесь считается «канонической» функцией связи.

1
Как интерпретировать коэффициенты в регрессии Пуассона?
Как я могу интерпретировать основные эффекты (коэффициенты для фиктивного фактора) в регрессии Пуассона? Предположим следующий пример: treatment <- factor(rep(c(1, 2), c(43, 41)), levels = c(1, 2), labels = c("placebo", "treated")) improved <- factor(rep(c(1, 2, 3, 1, 2, 3), c(29, 7, 7, 13, 7, 21)), levels = c(1, 2, 3), labels …

3
Что означают остатки в логистической регрессии?
Отвечая на этот вопрос, Джон Кристи предложил оценить соответствие моделей логистической регрессии путем оценки остатков. Я знаком с тем, как интерпретировать невязки в OLS, они находятся в том же масштабе, что и DV, и очень четко различие между y и y, предсказанное моделью. Однако для логистической регрессии, в прошлом я …

1
Почему преобразование квадратного корня рекомендуется для данных подсчета?
Часто рекомендуется брать квадратный корень, когда у вас есть данные подсчета. (Некоторые примеры CV можно найти в ответе @ HarveyMotulsky здесь или в ответе @ whuber здесь .) С другой стороны, при подборе обобщенной линейной модели с переменной отклика, распределенной как Пуассон, журнал является канонической ссылкой . Это похоже на …

4
Выбор между LM и GLM для лог-преобразованной переменной ответа
Я пытаюсь понять философию использования Обобщенной линейной модели (GLM) по сравнению с линейной моделью (LM). Я создал пример набора данных ниже, где: журнал( у) = x + εlog⁡(y)=x+ε\log(y) = x + \varepsilon В этом примере ошибка εε\varepsilon зависит от величины Yyy , поэтому я предположил бы, что линейная модель лог-преобразованного …

9
Расширенные рекомендации по статистике книг
На этом сайте есть несколько веток для рекомендаций по вводной статистике и машинному обучению, но я ищу текст по расширенной статистике, в том числе в порядке приоритета: максимальная вероятность, обобщенные линейные модели, анализ главных компонентов, нелинейные модели . Я пробовал Статистические Модели AC Davison, но, честно говоря, мне пришлось записать …

1
Получение прогнозных значений (Y = 1 или 0) из модели логистической регрессии
Допустим, у меня есть объект класса glm(соответствующий модели логистической регрессии), и я хотел бы превратить предсказанные вероятности, заданные с predict.glmпомощью аргумента, type="response"в двоичные ответы, то есть или Y = 0 . Какой самый быстрый и самый канонический способ сделать это в R?Y=1Y=1Y=1Y=0Y=0Y=0 Хотя, опять же , я знаю predict.glm, я …


2
Интерпретация остаточного и нулевого отклонения в GLM R
Как интерпретировать нулевое и остаточное отклонение в GLM в R? Мол, мы говорим, что чем меньше AIC, тем лучше. Существует ли аналогичная и быстрая интерпретация отклонений? Нулевое отклонение: 1146,1 на 1077 степеней свободы Остаточное отклонение: 4589,4 на 1099 степеней свободы AIC: 11089

3
Линейная модель с лог-преобразованным откликом против обобщенной линейной модели с лог-связью
В этой статье под названием «ВЫБОР СРЕДИ ОБОБЩЕННЫХ ЛИНЕЙНЫХ МОДЕЛЕЙ, ПРИМЕНЯЕМЫХ К МЕДИЦИНСКИМ ДАННЫМ» авторы пишут: В обобщенной линейной модели среднее значение преобразуется функцией связи вместо преобразования самого отклика. Два метода преобразования могут привести к совершенно разным результатам; например, среднее значение логарифмически преобразованных ответов не совпадает с логарифмом среднего ответа …

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.