Вопросы с тегом «lasso»

Метод регуляризации для регрессионных моделей, который сокращает коэффициенты до нуля, делая некоторые из них равными нулю. Таким образом Лассо выполняет выбор функции.


3
Как оценить параметр усадки в лассо или гребень регрессии с> 50K переменных?
Я хочу использовать регрессию Лассо или Риджа для модели с более чем 50 000 переменных. Я хочу сделать это, используя программный пакет в R. Как я могу оценить параметр усадки ( )?λλ\lambda Редактирование: Вот точка, до которой я добрался: set.seed (123) Y <- runif (1000) Xv <- sample(c(1,0), size= 1000*1000, …

2
Что такое упругая сеточная регуляризация и как она решает недостатки Риджа (
Всегда ли упругая чистая регуляризация всегда предпочтительнее, чем Lasso & Ridge, поскольку она, похоже, решает недостатки этих методов? Что такое интуиция и какая математика стоит за эластичной сеткой?

1
Является ли регрессия с регуляризацией L1 такой же, как Лассо, а с регуляризацией L2 такая же, как регрессия гребня? А как написать «Лассо»?
Я - инженер-программист, изучающий машинное обучение, особенно на курсах Эндрю Нг по машинному обучению . Изучая линейную регрессию с регуляризацией , я нашел смущающие термины: Регрессия с регуляризацией L1 или регуляризацией L2 ЛАССО Хребет регрессии Итак, мои вопросы: Является ли регрессия с регуляризацией L1 точно такой же, как LASSO? Является …


3
Можно ли рассчитать AIC и BIC для моделей лассо-регрессии?
Можно ли рассчитать значения AIC или BIC для моделей лассо-регрессии и других регуляризованных моделей, где параметры только частично входят в уравнение. Как определить степени свободы? Я использую R для подбора моделей регрессии Лассо с помощью glmnet()функции из glmnetпакета, и я хотел бы знать, как рассчитать значения AIC и BIC для …
31 r  model-selection  lasso  aic  bic 

2
Когда регуляризация L1 будет работать лучше, чем L2, и наоборот?
Примечание: я знаю, что у L1 есть свойство выбора функции. Я пытаюсь понять, какой из них выбрать, когда выбор функции совершенно не имеет значения. Как решить, какую регуляризацию (L1 или L2) использовать? Каковы плюсы и минусы каждой регуляризации L1 / L2? Рекомендовано ли вначале делать выбор объектов с использованием L1, …

3
следует ли изменять масштаб индикатора / двоичных / фиктивных предикторов для LASSO
Для LASSO (и других процедур выбора модели) важно изменить масштаб предикторов. Общая рекомендация я следую просто использовать 0, 1 среднее стандартное отклонение нормализации для непрерывных переменных. Но что тут делать с чайниками? Например, некоторые прикладные примеры из той же (отличной) летней школы, которую я связал с масштабированием непрерывных переменных, должны …

2
Подгонка модели ARIMAX с регуляризацией или штрафом (например, с помощью лассо, эластичной сетки или регрессии гребня)
Я использую функцию auto.arima () в пакете прогноза для подбора моделей ARMAX с различными ковариатами. Тем не менее, у меня часто есть большое количество переменных для выбора, и обычно получается окончательная модель, которая работает с их подмножеством. Мне не нравятся специальные методы для выбора переменных, потому что я человек и …


2
Стандартизация до Лассо действительно необходима?
Я прочитал три основные причины стандартизации переменных, прежде чем что-то вроде Lassoрегрессии: 1) Интерпретируемость коэффициентов. 2) Возможность ранжировать важность коэффициента по относительной величине оценок коэффициента после усадки. 3) Нет необходимости перехватывать. Но меня интересует самый важный момент. Есть ли у нас основания полагать, что стандартизация улучшит обобщение модели вне выборки? …

1
Могут ли степени свободы быть нецелым числом?
Когда я использую GAM, он дает мне остаточный DF, (последняя строка в коде). Что это значит? Выходя за рамки примера GAM, в общем, может ли число степеней свободы быть нецелым числом?26,626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

2
Почему штраф Лассо эквивалентен двойному экспоненциальному (Лапласу) ранее?
В ряде ссылок я читал, что оценка Лассо для вектора параметра регрессии эквивалентна апостериорной моде в которой предыдущее распределение для каждого является двойным экспоненциальным распределением (также известным как распределение Лапласа).BBBBBBBiBiB_i Я пытался доказать это, кто-то может конкретизировать детали?

2
Преимущества двойного лассо или двойного лассо?
Однажды я слышал метод использования лассо дважды (например, двойное лассо), когда вы выполняете лассо на исходном наборе переменных, скажем, S1, получаете разреженный набор с именем S2, а затем снова выполняете лассо на множестве S2, чтобы получить множество S3. , Есть ли методологический термин для этого? Кроме того, каковы преимущества выполнения …

3
Зачем использовать оценки Лассо над оценками OLS для Лассо-идентифицированного подмножества переменных?
Для регрессии Лассо предположим что лучшее решение (например, минимальная ошибка тестирования) выбирает k функций, так что \ hat {\ beta} ^ {lasso} = \ left (\ hat {\ beta} _1 ^ {lasso}, \ hat {\ beta} _2 ^ {lasso}, ..., \ hat {\ beta} _k ^ {lasso}, 0, ... 0 …

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.