2
Оценка ковариационного апостериорного распределения многомерного гауссова
Мне нужно «изучить» распределение двумерного гауссиана с несколькими выборками, но хорошая гипотеза о предыдущем распределении, поэтому я хотел бы использовать байесовский подход. Я определил свой предыдущий: P(μ)∼N(μ0,Σ0)P(μ)∼N(μ0,Σ0) \mathbf{P}(\mathbf{\mu}) \sim \mathcal{N}(\mathbf{\mu_0},\mathbf{\Sigma_0}) μ0=[00] Σ0=[160027]μ0=[00] Σ0=[160027] \mathbf{\mu_0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ \ \ \mathbf{\Sigma_0} = \begin{bmatrix} 16 & 0 \\ …