Вопросы с тегом «bagging»

Бэггинг или бутстрап-агрегирование - это частный случай усреднения модели. При стандартном тренировочном наборе упаковка генерируетm новые обучающие наборы путем начальной загрузки, а затем результаты использования некоторого метода обучения на mсгенерированные наборы данных усредняются. Упаковка в мешки может стабилизировать результаты некоторых нестабильных методов, таких как деревья.


5
Случайный лес - это алгоритм повышения?
Краткое определение повышения : Может ли группа слабых учеников создать одного сильного ученика? Слабый ученик определяется как классификатор, который лишь незначительно коррелирует с истинной классификацией (он может маркировать примеры лучше, чем случайные догадки). Краткое определение случайного леса : Случайные леса произрастает много деревьев классификации. Чтобы классифицировать новый объект из входного …

2
Это современная методология регрессии?
Я давно слежу за соревнованиями в Kaggle и осознаю, что многие выигрышные стратегии предполагают использование хотя бы одного из «больших троек»: мешки, бустинг и стекирование. Для регрессий вместо того, чтобы концентрироваться на построении одной наилучшей из возможных моделей регрессии, кажется, что создание моделей множественной регрессии, таких как (обобщенная) линейная регрессия, …


3
Когда я не должен использовать ансамблевой классификатор?
В общем, в проблеме классификации, где цель состоит в том, чтобы точно предсказать членство в классах вне выборки, когда я не должен использовать ансамблевый классификатор? Этот вопрос тесно связан с тем, почему не всегда использовать ансамблевое обучение? , Этот вопрос спрашивает, почему мы не используем ансамбли все время. Я хочу …

1
Каковы теоретические гарантии упаковки
Я (примерно) слышал, что: пакетирование - это метод, позволяющий уменьшить дисперсию алгоритма предиктор / оценщик / обучение. Однако я никогда не видел формального математического доказательства этого утверждения. Кто-нибудь знает, почему это математически верно? Это просто кажется настолько широко признанным / известным фактом, что я ожидал бы прямой ссылки на это. …

1
Повышение И Упаковка Деревьев (XGBoost, LightGBM)
Есть много постов в блогах, видео на YouTube и т. Д. Об идеях создания мешков или повышения деревьев. Мое общее понимание таково, что псевдокод для каждого из них: Bagging: Возьмите N случайных выборок x% выборок и y% функций Установите вашу модель (например, дерево решений) на каждый из N Прогнозировать с …

1
Какой метод множественного сравнения использовать для модели lmer: lsmeans или glht?
Я анализирую набор данных, используя модель смешанных эффектов с одним фиксированным эффектом (условием) и двумя случайными эффектами (участник из-за дизайна объекта и пары). Модель была сгенерирована с lme4пакетом: exp.model<-lmer(outcome~condition+(1|participant)+(1|pair),data=exp). Затем я выполнил тест отношения правдоподобия этой модели по сравнению с моделью без фиксированного эффекта (условия) и получил значительную разницу. В …

2
Почему функция начальной загрузки scikit-learn пересчитывает набор тестов?
При использовании начальной загрузки для оценки модели я всегда думал, что образцы из пакета были непосредственно использованы в качестве тестового набора. Однако, похоже, что это не относится к устаревшему подходу scikit-learnBootstrap , который, похоже, строит тестовый набор из чертежа с заменой из подмножества данных из пакета. Что за статистическое обоснование …

1
Какие алгоритмы упаковки являются достойными преемниками Random Forest?
Я бы сказал, что для повышения алгоритмов они развивались довольно хорошо. В начале 1995 года был представлен AdaBoost, затем через некоторое время это была Gradient Boosting Machine (GBM). Недавно, около 2015 года, был представлен XGBoost, который точен, справляется с переоснащением и стал победителем нескольких соревнований Kaggle. В 2017 году Microsoft …

5
Случайный лес и алгоритм дерева решений
Случайный лес - это набор деревьев решений, следующих концепции бэгинга. Когда мы переходим от одного дерева решений к следующему дереву решений, то как информация, полученная с помощью последнего дерева решений, переходит к следующему? Потому что, насколько я понимаю, нет ничего лучше обученной модели, которая создается для каждого дерева решений и …

3
Случайный лес и усиление являются параметрическими или непараметрическими?
Прочитав отличное статистическое моделирование: две культуры (Breiman 2001) , мы можем использовать все различия между традиционными статистическими моделями (например, линейной регрессией) и алгоритмами машинного обучения (например, Bagging, Random Forest, Boosted trees ...). Брейман критикует модели данных (параметрические), потому что они основаны на предположении, что наблюдения генерируются известной формальной моделью, предписанной …

1
Почему бы не всегда использовать ансамблевое обучение?
Мне кажется, что ансамблевое обучение всегда даст лучшую прогностическую эффективность, чем с одной гипотезой обучения. Итак, почему бы нам не использовать их все время? Я думаю, возможно, из-за вычислительных ограничений? (даже тогда мы используем слабые предикторы, поэтому я не знаю).

2
Почему дерево в мешках / случайное лесное дерево имеет более высокий уклон, чем одно дерево решений?
Если мы рассмотрим полноценное дерево решений (т.е. дерево необрезанных решений), оно имеет высокую дисперсию и низкое смещение. Мешки и случайные леса используют эти модели высокой дисперсии и агрегируют их, чтобы уменьшить дисперсию и, таким образом, повысить точность прогнозирования. И Мешки, и Случайные Леса используют выборку Bootstrap, и, как описано в …

1
Случайный лесной вероятностный прогноз против большинства голосов
Кажется, Scikit Learn использует вероятностный прогноз вместо большинства голосов за метод агрегации моделей без объяснения причин (1.9.2.1. Случайные леса). Есть четкое объяснение почему? Кроме того, есть ли хорошая статья или обзорная статья о различных методах агрегации моделей, которые можно использовать для рандомизации по лесам? Спасибо!

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.