Вопросы с тегом «regression»

Методы анализа взаимосвязи между одной (или несколькими) «зависимыми» переменными и «независимыми» переменными.

3
Нейронная сеть для множественной выходной регрессии
У меня есть набор данных, содержащий 34 входных столбца и 8 выходных столбцов. Один из способов решения этой проблемы - взять 34 входа и построить индивидуальную модель регрессии для каждого выходного столбца. Мне интересно, если эта проблема может быть решена с помощью только одной модели, особенно с помощью нейронной сети. …

5
сделать морскую карту тепла больше
Я создаю corr()DF из оригинального DF. corr()ДФ вышел 70 X 70 и невозможно представить себе Heatmap ... sns.heatmap(df). Если я попытаюсь отобразить corr = df.corr(), таблица не умещается на экране, и я вижу все корреляции. Это способ печати всего, dfнезависимо от его размера, или контроля размера тепловой карты?
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

2
Зачем нам отбрасывать одну фиктивную переменную?
Я узнал, что для создания регрессионной модели мы должны позаботиться о категориальных переменных, преобразовав их в фиктивные переменные. Например, если в нашем наборе данных есть переменная типа location: Location ---------- Californian NY Florida Мы должны конвертировать их как: 1 0 0 0 1 0 0 0 1 Однако было предложено …

3
Почему мы преобразуем перекос данных в нормальное распределение
Я проходил решение конкурса цен на жилье на Kaggle ( ядро Human Analog по ценам на жилье : методы предварительной регрессии ) и наткнулся на эту часть: # Transform the skewed numeric features by taking log(feature + 1). # This will make the features more normal. from scipy.stats import skew …


2
Тарифы авиакомпаний - Какой анализ следует использовать для выявления конкурентного поведения при установлении цен и ценовых корреляций?
Я хочу исследовать поведение авиакомпаний в отношении ценообразования - особенно то, как авиакомпании реагируют на ценообразование конкурентов. Как я сказал бы, мои знания о более сложном анализе довольно ограничены, я использовал в основном все основные методы для сбора общего представления о данных. Это включает в себя простые графики, которые уже …

2
Моделирование неравномерно распределенных временных рядов
У меня есть непрерывная переменная, отобранная в течение года с нерегулярными интервалами. Некоторые дни имеют более одного наблюдения в час, в то время как другие периоды не имеют ничего в течение нескольких дней. Это делает особенно сложным обнаружение закономерностей во временных рядах, поскольку некоторые месяцы (например, октябрь) имеют высокую выборку, …

1
Сколько ячеек LSTM я должен использовать?
Существуют ли какие-либо практические правила (или фактические правила), касающиеся минимального, максимального и «разумного» количества ячеек LSTM, которые я должен использовать? В частности, я имею в виду BasicLSTMCell из TensorFlow и num_unitsсвойства. Пожалуйста, предположите, что у меня есть проблема классификации, определяемая как: t - number of time steps n - length …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

2
Решая систему уравнений с разреженными данными
Я пытаюсь решить систему уравнений, которая имеет 40 независимых переменных (x1, ..., x40) и одну зависимую переменную (у). Общее количество уравнений (количество строк) составляет ~ 300, и я хочу решить для набора из 40 коэффициентов, который минимизирует общую сумму квадратов ошибки между y и прогнозируемым значением. Моя проблема в том, …

3
Могут ли деревья регрессии предсказывать непрерывно?
Предположим, у меня есть гладкая функция типа е( х , у) = х2+ у2е(Икс,Y)знак равноИкс2+Y2f(x, y) = x^2+y^2 . У меня есть тренировочный набор и, конечно, я не знаю f, хотя я могу оценить f где угодно.D ⊊ { ( ( х , у) , ф(х , у) ) |( …

3
Какую регрессию использовать для расчета результата выборов в многопартийной системе?
Я хочу сделать прогноз на результат парламентских выборов. Мой результат будет%, который получает каждая сторона. Существует более двух сторон, поэтому логистическая регрессия не является жизнеспособным вариантом. Я мог бы сделать отдельный регресс для каждой партии, но в этом случае результаты были бы в некотором роде независимыми друг от друга. Это …

3
Предсказать лучшее время звонка
У меня есть набор данных, включающий набор клиентов в разных городах Калифорнии, время вызова для каждого клиента и статус вызова (True, если клиент отвечает на вызов, и False, если клиент не отвечает). Я должен найти подходящее время звонка для будущих клиентов, так что вероятность ответа на звонок высока. Итак, какова …

2
Что делать, если данные тестирования имеют меньше возможностей, чем данные обучения?
Допустим, мы прогнозируем продажи магазина, и мои данные обучения имеют два набора функций: Один о продаже магазина с датами (поле «Магазин» не является уникальным) Один из типов магазинов (поле «Магазин» здесь уникально) Таким образом, матрица будет выглядеть примерно так: +-------+-----------+------------+---------+-----------+------+-------+--------------+ | Store | DayOfWeek | Date | Sales | Customers …

2
Стохастический градиентный спуск на основе векторных операций?
давайте предположим, что я хочу обучить алгоритм регрессии стохастического градиентного спуска, используя набор данных, который имеет N выборок. Поскольку размер набора данных фиксирован, я буду использовать данные T раз. На каждой итерации или «эпохе» я использую каждую обучающую выборку ровно один раз после случайного переупорядочения всего обучающего набора. Моя реализация …

1
Как мне реализовать сигмовидную функцию в Octave? [закрыто]
Закрыто . Этот вопрос нуждается в деталях или ясности . В настоящее время он не принимает ответы. Хотите улучшить этот вопрос? Добавьте детали и проясните проблему, отредактировав этот пост . Закрыто 2 года назад . Итак, учитывая, что сигмовидная функция определяется как hθ (x) = g (θ ^ (T) x), …

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.