Вопросы с тегом «encoding»

6
Функции кодирования, такие как месяц и час, как категориальные или числовые?
Лучше ли кодировать функции, такие как месяц и час, как фактор или число в модели машинного обучения? С одной стороны, я считаю, что числовое кодирование может быть разумным, поскольку время - это прогрессирующий процесс (за пятым месяцем следует шестой), но с другой стороны, я думаю, что категориальное кодирование может быть …

3
Что такое позиционное кодирование в модели трансформатора?
Я новичок в ML, и это мой первый вопрос здесь, так что извините, если мой вопрос глупый. Я пытаюсь прочитать и понять статью. Внимание - это все, что вам нужно, и в нем есть картинка: Я не знаю, что такое позиционное кодирование . Слушая некоторые видеоролики на YouTube, я обнаружил, …

2
Sparse_categorical_crossentropy vs категорическая_кросентропия (керас, точность)
Что лучше для точности или они одинаковые? Конечно, если вы используете categoryorical_crossentropy, вы используете одну горячую кодировку, а если вы используете sparse_categorical_crossentropy, вы кодируете как обычные целые числа. Кроме того, когда один лучше другого?

1
Как бороться с строковыми метками в мультиклассовой классификации с керасом?
Я новичок в области машинного обучения и кера, и сейчас я занимаюсь многоклассовой классификацией изображений с помощью кера. На входе помечено изображение. После некоторой предварительной обработки данные обучения представлены в списке Python как: [["dog", "path/to/dog/imageX.jpg"],["cat", "path/to/cat/imageX.jpg"], ["bird", "path/to/cat/imageX.jpg"]] «собака», «кошка» и «птица» являются метками класса. Я думаю, что для этой …

5
сделать морскую карту тепла больше
Я создаю corr()DF из оригинального DF. corr()ДФ вышел 70 X 70 и невозможно представить себе Heatmap ... sns.heatmap(df). Если я попытаюсь отобразить corr = df.corr(), таблица не умещается на экране, и я вижу все корреляции. Это способ печати всего, dfнезависимо от его размера, или контроля размера тепловой карты?
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

4
Одна горячая альтернатива кодирования для больших категориальных значений?
У меня есть датафрейм с большими категориальными значениями более 1600 категорий, есть ли способ найти альтернативы, чтобы у меня не было более 1600 столбцов. Я нашел эту интересную ссылку ниже http://amunategui.github.io/feature-hashing/#sourcecode Но они конвертируются в класс / объект, который я не хочу. Я хочу, чтобы мой конечный результат был в …

1
В чем разница между глобальным и универсальным методами сжатия?
Я понимаю, что методы сжатия можно разделить на два основных набора: Глобальный местный Первый набор работает независимо от обрабатываемых данных, т. Е. Они не зависят от какой-либо характеристики данных и, следовательно, не требуют какой-либо предварительной обработки какой-либо части набора данных (до самого сжатия). С другой стороны, локальные методы анализируют данные, …

1
Сколько ячеек LSTM я должен использовать?
Существуют ли какие-либо практические правила (или фактические правила), касающиеся минимального, максимального и «разумного» количества ячеек LSTM, которые я должен использовать? В частности, я имею в виду BasicLSTMCell из TensorFlow и num_unitsсвойства. Пожалуйста, предположите, что у меня есть проблема классификации, определяемая как: t - number of time steps n - length …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.