Вопросы с тегом «dynamic-programming»

1
Динамическое программирование никогда не бывает слабее, чем Greedy?
В сложности схемы у нас есть разделения между степенями различных моделей схемы. В сложности доказательства мы имеем разделения между степенями различных систем доказательства. Но в алгоритмическом у нас все еще есть только несколько разделений между степенями алгоритмических парадигм . Мои вопросы ниже направлены на то, чтобы затронуть эту последнюю проблему …

1
Сложность монотонной арифметической схемы элементарных симметрических полиномов?
В ККk -й элементарный симметричный полином SNК( х1, … , ХN)SКN(Икс1,...,ИксN)S_k^n(x_1,\ldots,x_n) является суммой всех продуктов различных переменных. Меня интересует сложность монотонной арифметической схемы этого многочлена. Простой алгоритм динамического программирования (как и рис. 1 ниже) дает схему с воротами .( нК)(NК)\binom{n}{k}ККk( + , × )(+,×)(+,\times)( + , × )(+,×)(+,\times)O ( к …

4
Является ли eta-эквивалентность для функций совместимой с операцией seke в Haskell?
Лемма: Предполагая, что эта эквивалентность у нас есть (\x -> ⊥) = ⊥ :: A -> B. Доказательство: ⊥ = (\x -> ⊥ x)по eta-эквивалентности и (\x -> ⊥ x) = (\x -> ⊥)по сокращению под лямбду. В отчете Haskell 2010, раздел 6.2, seqфункция определяется двумя уравнениями: seq :: a …

1
Покрывающая струна палиндромами
Дана строка , А палиндром крышка представляет собой последовательность р 1 р 2 ⋯ р м слов р я такое , что р 1 р 2 ⋯ р м = ш , и так , что каждый р я палиндром ,w = σ1σ2… ΣNw=σ1σ2…σnw=\sigma_1\sigma_2\ldots\sigma_nп1п2⋯ рмp1p2⋯pmp_1p_2\cdots p_mпяpip_iп1п2⋯ рм= шp1p2⋯pm=wp_1p_2\cdots p_m = …
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.