Вопросы с тегом «random-forest»

Случайный лес - это классификатор машинного обучения, основанный на выборе случайных подмножеств переменных для каждого дерева и использовании наиболее частых выходных данных дерева в качестве общей классификации.

6
строки как объекты в дереве решений / случайном лесу
Я делаю некоторые проблемы с применением дерева решений / случайного леса. Я пытаюсь приспособить проблему, в которой в качестве функций есть цифры, а также строки (например, название страны). Теперь библиотека scikit-learn принимает только числа в качестве параметров, но я хочу ввести строки, так как они несут значительный объем знаний. Как …

9
ValueError: Входные данные содержат NaN, бесконечность или значение, слишком большое для dtype ('float32')
Я получил ValueError при прогнозировании тестовых данных с использованием модели RandomForest. Мой код: clf = RandomForestClassifier(n_estimators=10, max_depth=6, n_jobs=1, verbose=2) clf.fit(X_fit, y_fit) df_test.fillna(df_test.mean()) X_test = df_test.values y_pred = clf.predict(X_test) Ошибка: ValueError: Input contains NaN, infinity or a value too large for dtype('float32'). Как найти неверные значения в тестовом наборе данных? Кроме …

1
Почему xgboost намного быстрее, чем sklearn GradientBoostingClassifier?
Я пытаюсь обучить модели повышения градиента более чем на 50 тыс. Примеров с 100 числовыми функциями. XGBClassifierобрабатывает 500 деревьев в течение 43 секунд на моей машине, в то время как GradientBoostingClassifierобрабатывает только 10 деревьев (!) за 1 минуту и ​​2 секунды :( Я не стал пытаться вырастить 500 деревьев, так …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 

4
Когда использовать Random Forest поверх SVM и наоборот?
Когда можно использовать Random Forestснова SVMи наоборот? Я понимаю, что cross-validationсравнение моделей является важным аспектом выбора модели, но здесь я хотел бы узнать больше о практических правилах и эвристике этих двух методов. Может кто-нибудь объяснить, какие тонкости, сильные и слабые стороны классификаторов, а также проблемы, которые лучше всего подходят для …

3
Понимание Forex_Proba из MultiOutputClassifier
Я следую этому примеру на веб-сайте scikit-learn, чтобы выполнить многопользовательскую классификацию с использованием модели Random Forest. from sklearn.datasets import make_classification from sklearn.multioutput import MultiOutputClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.utils import shuffle import numpy as np X, y1 = make_classification(n_samples=5, n_features=5, n_informative=2, n_classes=2, random_state=1) y2 = shuffle(y1, random_state=1) Y = …

3
Зачем нам XGBoost и Random Forest?
Я не был ясен в паре концепций: XGBoost превращает слабых учеников в сильных учеников. В чем преимущество этого? Объединить много слабых учеников вместо одного дерева? Random Forest использует различные образцы из дерева для создания дерева. В чем преимущество этого метода вместо использования единственного дерева?

4
Есть ли случайный лес наряд?
Я читал вокруг о случайных лесах, но я не могу найти окончательного ответа о проблеме переоснащения. Согласно оригинальной статье Бреймана, они не должны переодеваться при увеличении количества деревьев в лесу, но, похоже, по этому поводу нет единого мнения. Это создает мне некоторую путаницу по этому вопросу. Может быть, кто-то более …

3
Требуется ли перекрестная проверка для моделирования со случайными лесами?
Насколько я видел, мнения об этом, как правило, расходятся. Лучшая практика, безусловно, диктует использование перекрестной проверки (особенно если сравнивать RF с другими алгоритмами в одном и том же наборе данных). С другой стороны, исходный источник утверждает, что факт ошибки OOB, вычисляемый во время обучения модели, является достаточным показателем эффективности тестового …

5
Выберите алгоритм двоичной классификации
У меня есть проблема двоичной классификации: Примерно 1000 образцов в тренировочном наборе 10 атрибутов, включая двоичные, числовые и категориальные Какой алгоритм является лучшим выбором для этого типа проблемы? По умолчанию я собираюсь начать с SVM (предварительно имея номинальные значения атрибутов, преобразованные в двоичные объекты), поскольку он считается лучшим для относительно …

2
Как повысить точность классификаторов?
Я использую пример OpenCV letter_recog.cpp для экспериментов со случайными деревьями и другими классификаторами. Этот пример имеет реализации шести классификаторов - случайных деревьев, бустинга, MLP, kNN, наивных байесовских и SVM. Используется набор данных для распознавания букв UCI с 20000 экземплярами и 16 функциями, которые я разделил пополам для обучения и тестирования. …

5
сделать морскую карту тепла больше
Я создаю corr()DF из оригинального DF. corr()ДФ вышел 70 X 70 и невозможно представить себе Heatmap ... sns.heatmap(df). Если я попытаюсь отобразить corr = df.corr(), таблица не умещается на экране, и я вижу все корреляции. Это способ печати всего, dfнезависимо от его размера, или контроля размера тепловой карты?
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

1
Метод оценки OOB RandomForestClassifier
Использует ли реализация случайного леса в scikit-learn среднюю точность в качестве метода оценки для оценки ошибки обобщения с выборками из пакета? Это не упоминается в документации, но метод Score () сообщает о средней точности. У меня очень несбалансированный набор данных, и я использую AUC ROC в качестве метрики оценки в …

1
Нужна ли стратифицированная выборка (случайный лес, Python)?
Я использую Python для запуска модели случайного леса на моем несбалансированном наборе данных (целевой переменной был двоичный класс). Разделяя набор данных обучения и тестирования, я боролся, использовать ли стратифицированную выборку (как показано в коде) или нет. До сих пор я наблюдал в своем проекте, что стратифицированный случай приведет к более …

1
Сколько функций для выборки с использованием случайных лесов
На странице Википедии, которая цитирует «Элементы статистического обучения», написано: Как правило, для задачи классификации с функциями, ⌊ √ппp функции используются в каждом разделении.⌊ р-√⌋⌊п⌋\lfloor \sqrt{p}\rfloor Я понимаю, что это довольно обоснованное предположение, и оно, вероятно, подтверждается эмпирическими данными, но есть ли другие причины, по которым можно было бы выбрать квадратный …

5
Важность функции с помощью scikit-learn Random Forest показывает очень высокое стандартное отклонение
Я использую scikit-learn Random Forest Classifier и хочу показать важность функции, как в этом примере . Однако мой результат совершенно другой, в том смысле, что стандартное отклонение важности объекта почти всегда больше, чем значение самого свойства (см. Прилагаемое изображение). Возможно ли иметь такое поведение, или я делаю какие-то ошибки при …

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.