Вопросы с тегом «language-model»

1
Почему xgboost намного быстрее, чем sklearn GradientBoostingClassifier?
Я пытаюсь обучить модели повышения градиента более чем на 50 тыс. Примеров с 100 числовыми функциями. XGBClassifierобрабатывает 500 деревьев в течение 43 секунд на моей машине, в то время как GradientBoostingClassifierобрабатывает только 10 деревьев (!) за 1 минуту и ​​2 секунды :( Я не стал пытаться вырастить 500 деревьев, так …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 

6
В чем разница между гиперпараметрами модели и параметрами модели?
Я заметил, что такие термины, как гиперпараметр модели и параметр модели , использовались в сети взаимозаменяемо без предварительного разъяснения. Я думаю, что это неправильно и нуждается в объяснении. Рассмотрим модель машинного обучения, классификатор или распознаватель изображений на основе SVM / NN / NB - все, что сначала приходит на ум. …

1
Сколько ячеек LSTM я должен использовать?
Существуют ли какие-либо практические правила (или фактические правила), касающиеся минимального, максимального и «разумного» количества ячеек LSTM, которые я должен использовать? В частности, я имею в виду BasicLSTMCell из TensorFlow и num_unitsсвойства. Пожалуйста, предположите, что у меня есть проблема классификации, определяемая как: t - number of time steps n - length …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
Существуют ли хорошие готовые языковые модели для Python?
Я создаю прототип приложения и мне нужна языковая модель для вычисления недоумения в некоторых сгенерированных предложениях. Есть ли в Python обученная языковая модель, которую я могу легко использовать? Что-то простое, как model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert junior pancake') assert …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

5
Как создать хороший список стоп-слов
Я ищу несколько советов о том, как составить список стоп-слов. Кто-то знает / кто-то может порекомендовать хороший метод для извлечения списков стоп-слов из самого набора данных для предварительной обработки и фильтрации? Данные: огромное количество вводимого человеком текста различной длины (поисковые термины и целые предложения (до 200 символов)) в течение нескольких …
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.