Вопросы с тегом «naive-bayes-classifier»

1
Почему xgboost намного быстрее, чем sklearn GradientBoostingClassifier?
Я пытаюсь обучить модели повышения градиента более чем на 50 тыс. Примеров с 100 числовыми функциями. XGBClassifierобрабатывает 500 деревьев в течение 43 секунд на моей машине, в то время как GradientBoostingClassifierобрабатывает только 10 деревьев (!) за 1 минуту и ​​2 секунды :( Я не стал пытаться вырастить 500 деревьев, так …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 

5
сделать морскую карту тепла больше
Я создаю corr()DF из оригинального DF. corr()ДФ вышел 70 X 70 и невозможно представить себе Heatmap ... sns.heatmap(df). Если я попытаюсь отобразить corr = df.corr(), таблица не умещается на экране, и я вижу все корреляции. Это способ печати всего, dfнезависимо от его размера, или контроля размера тепловой карты?
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

1
Как обработать нулевой фактор в расчете наивного байесовского классификатора?
Если у меня есть набор обучающих данных, и я обучаю его наивному байесовскому классификатору, и у меня есть значение атрибута, вероятность которого равна нулю. Как мне справиться с этим, если позже я хочу предсказать классификацию на новых данных? Проблема в том, что если в расчете есть ноль, то все произведение …

2
Реализовать дополнительный наивный байесовский в python?
проблема Я пытался использовать наивный байесовский код на помеченном наборе данных о преступности, но получил очень плохие результаты (точность 7%). Наивный Байес работает намного быстрее, чем другие алгоритмы, которые я использовал, поэтому я хотел попытаться выяснить, почему счет был таким низким. Исследование После прочтения я обнаружил, что наивный байесовский анализ …
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.