Подумай, что ты спрашиваешь. Если вы просто хотите узнать, проходит ли общее значение p для эффекта состояния какое-то произвольное значение отсечения, например 0,05, то это просто. Во-первых, вы хотите узнать общий эффект. Вы можете получить это от anova
.
m <- lmer(...) #just run your lmer command but save the model
anova(m)
Теперь у вас есть значение F. Вы можете взять это и посмотреть в некоторых F таблицах. Просто выберите минимально возможный деном. степени свободы. Отсечка там будет около 20. Ваш F может быть больше, чем это, но я могу ошибаться. Даже если это не так, посмотрите на количество степеней свободы по сравнению с обычным расчетом ANOVA, используя количество экспериментов, которые у вас есть. Придерживаясь этого значения, вы уменьшаете примерно до 5 для отсечки. Теперь вы легко проходите это в своем кабинете. «Истинный» df для вашей модели будет выше, чем это, потому что вы моделируете каждую точку данных, а не агрегированные значения, которые будет моделировать ANOVA.
Если вы на самом деле хотите получить точное значение p, такой вещи не будет, если вы не готовы сделать теоретическое утверждение об этом. Если вы читаете Pinheiro & Bates (2001, и, возможно, еще несколько книг по этой теме ... см. Другие ссылки в этих ответах), и у вас нет аргумента для конкретного df, тогда вы можете использовать это. Но вы все равно не ищете точное значение p. Я упоминаю об этом, потому что поэтому вы не должны сообщать точное значение p, только то, что ваша отсечка пройдена.
Вы должны действительно рассмотреть ответ Майка Лоуренса, потому что сама идея просто придерживаться точки прохода для p-значений в качестве окончательной и наиболее важной информации для извлечения из ваших данных, как правило, ошибочна (но может и не быть в вашем случае, так как мы не на самом деле достаточно информации, чтобы знать). Майк использует любопытную версию вычисления LR, которая может быть интересной, но может быть трудно найти много документации по ней. Если вы посмотрите на выбор и интерпретацию модели с помощью AIC, она вам может понравиться.