Простая генерация шума


27

Я ищу для генерации шума, который выглядит следующим образом:

введите описание изображения здесьвведите описание изображения здесь

(изображения любезно предоставлены Пониманием Перлин Шума )

Я в основном ищу шум с множеством мелких «ряби». Следующее нежелательно:

введите описание изображения здесь

Есть ли простые способы сделать это? Я смотрю на Perlin и Simplex уже неделю, и я не могу заставить его работать в JavaScript, или когда я это делаю, у меня нет правильных параметров для генерации таких изображений, или это мучительно медленный.

Я понимаю, что 3 изображения, которые я выложил, могут быть получены с помощью одного и того же алгоритма, но в другом масштабе, но мне этот алгоритм не нужен. Мне просто нужен очень простой алгоритм для достижения чего-то, как на первом изображении в идеале. Может быть, какое-то размытие сделает эту работу, но я не могу добиться результатов.

Я разрабатываю это на JavaScript, но подойдет любой код или даже простое и подробное объяснение.


3
К твоему сведению, ты явно хочешь перлинского шума. Упомянутый вами «нежелательный» эффект состоит из нескольких октав шума Перлина, добавленных друг к другу (это иногда называют фрактальным шумом). Вам действительно нужно только одно изображение, или вы хотите, чтобы оно менялось со временем? Если это так, какой эффект вы после?
Сэм Хочевар

@ SamHocevar Я хочу генерировать это на лету. Я хочу воспроизвести то, что упоминается в этом вопросе .
Xeon06

Я нашел эту реализацию JS perlin noise и интегрировал ее в jsFiddle . Однако результат сильно отличается от реализации перлин-шума во флэш-памяти, что заставляет меня задуматься о деталях реализации генератора перлин-шума, который поставляется со вспышкой.
bummzack

@bummzack действительно, кажется, генератор Flash генерирует идеальный шум для моей цели. Я не могу получить достойный порог, работая с Fiddle, который вы опубликовали.
Xeon06

Меня это тоже интересует, поэтому я ставлю вопрос на stackoverflow . Надеюсь, мы получим там ответы.
bummzack

Ответы:


16

В то время как существующие ответы обеспечивают хороший способ добиться того, что показывают изображения в вопросе, комментарии показали, что цель состоит в том, чтобы создать изображение, как показано ниже:

перлин шумовая турбулентность

Этот тип шума весьма отличается от шума, показанного на изображениях вопроса, так как он образует близко изолированные капли.

Оказывается, что этот вид шума называется турбулентностью, которая (в соответствии с этой статьей CPU Gems ) реализована следующим образом (где noiseфункция Perlin-noise возвращает значения от -1..1):

double turbulence(double x, double y, double z, double f) {
    double t = -.5;
    for ( ; f <= W/12 ; f *= 2) // W = Image width in pixels
        t += abs(noise(x,y,z,f) / f);
    return t;
}

При использовании этой JavaScript-реализации Perlin-noise с функцией турбулентности, описанной выше, генерируется шум, который очень похож на изображение выше:

шум турбулентности

Код JavaScript, который использовался для генерации изображения выше, можно найти в этом jsFiddle .


3
Это какой-то странный код, версия JavaScript сильно отличается от версии Java, а версия JavaScript в основном совершенно испорчена return Math.abs(this.noise(x,y,z)*2)-.5.
аааааааааааа

@aaaaaaaaaaaa Прими это с самим Кеном Перлином, он написал именно этот блок кода.
b1nary.atr0phy

15

Ваши примеры изображений очень похожи на розовый шум. Он генерируется так:

  • Во-первых, у нас есть какой-то плавный случайный шум. Обычно это достигается путем вычисления псевдослучайных значений в точках с целочисленными координатами и некоторой интерполяции этих значений. Результат на этом этапе выглядит так:

    введите описание изображения здесь

  • Далее мы берем этот шум и «сжимаем» его, увеличивая его частоту. Самая простая формула для этого есть n2 (x, y) = n1 (xf , yf ). Таким образом, шумовая картина сжимается f раз в обоих направлениях. На этом этапе лучшие алгоритмы шумов также вращают и / или переводят диаграмму шума, чтобы нарушить закономерности.

  • Затем этот сжатый шаблон умножается на некоторое значение (меньше 1) и добавляется к первому шаблону. По сути, мы добавляем небольшое высокочастотное изменение поверх низкочастотного паттерна. Результат выглядит примерно так:

    введите описание изображения здесь

  • Шаги 2 и 3 могут повторяться несколько раз, добавляя все более мелкие детали. чистый результат обычно выглядит так же, как ваш пример с красным крестом. Однако обратите внимание, что в нашем алгоритме есть 3 параметра, с которыми можно поиграть:

    • Счет октав - или, другими словами, количество шагов в поколении. Больше шагов означает более тонкую детализацию полученного шаблона.
    • Упорство. Это то значение, которое умножается на каждом шаге. Обычно постоянство составляет от 0 до 1. Высокие значения постоянства обычно дают «шумные» шаблоны с большим количеством мелких деталей. Низкая стойкость создает гладкие узоры с тонкими деталями.
    • Лакунарности. Это коэффициент «сжатия», который мы используем на каждом этапе. Лакунарность работает как постоянство, но не совсем так. Низкая лакунарность создает более гладкие узоры, а высокая лакунарность создает более четкие и высококонтрастные.

Вот некоторые примеры:

Высокая стойкость: Высокий постоянный шум

Высокая лакунарность: Высокий шум лакунарности

Низкая лакунарность: Низкий шум лакунарности

Игра с этими параметрами - не единственное, что вы можете сделать. Один хороший метод, который может добавить характер к шаблонам шума, состоит в том, чтобы использовать возмущение , то есть добавить немного шума к входным координатам вашей функции шума.

Например, предположим , что у вас есть некоторая функция , которая генерирует шум заданные координаты и случайное зерно: Noise(x,y, seed). Чем вы можете использовать что-то вроде Noise(x+Noise(x,y,234), y+Noise(x,y,6544), seed)для получения возмущенного значения. Это может привести к таким шаблонам (возмущение применяется к круговому шаблону, а не к шуму):

турбулентность

Если вы хотите узнать больше, я предлагаю вам взглянуть на libnoise (C ++) или CoherentNoise (C #). К сожалению, я не знаю ни одной библиотеки Javascript, генерирующей шум.


6

Код прокомментирован. Кредит идет Шону МакКаллоу. http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf

// Ported from Stefan Gustavson's java implementation
// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
// Read Stefan's excellent paper for details on how this code works.
//
// Sean McCullough banksean@gmail.com

/**
* You can pass in a random number generator object if you like.
* It is assumed to have a random() method.
*/
var SimplexNoise = function(r) {
if (r == undefined) r = Math;
  this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0],
                                 [1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1],
                                 [0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]];
  this.p = [];
  for (var i=0; i<256; i++) {
this.p[i] = Math.floor(r.random()*256);
  }
  // To remove the need for index wrapping, double the permutation table length
  this.perm = [];
  for(var i=0; i<512; i++) {
this.perm[i]=this.p[i & 255];
}

  // A lookup table to traverse the simplex around a given point in 4D.
  // Details can be found where this table is used, in the 4D noise method.
  this.simplex = [
    [0,1,2,3],[0,1,3,2],[0,0,0,0],[0,2,3,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,2,3,0],
    [0,2,1,3],[0,0,0,0],[0,3,1,2],[0,3,2,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,3,2,0],
    [0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
    [1,2,0,3],[0,0,0,0],[1,3,0,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,3,0,1],[2,3,1,0],
    [1,0,2,3],[1,0,3,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,0,3,1],[0,0,0,0],[2,1,3,0],
    [0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
    [2,0,1,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,0,1,2],[3,0,2,1],[0,0,0,0],[3,1,2,0],
    [2,1,0,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,1,0,2],[0,0,0,0],[3,2,0,1],[3,2,1,0]];
};

SimplexNoise.prototype.dot = function(g, x, y) {
return g[0]*x + g[1]*y;
};

SimplexNoise.prototype.noise = function(xin, yin) {
  var n0, n1, n2; // Noise contributions from the three corners
  // Skew the input space to determine which simplex cell we're in
  var F2 = 0.5*(Math.sqrt(3.0)-1.0);
  var s = (xin+yin)*F2; // Hairy factor for 2D
  var i = Math.floor(xin+s);
  var j = Math.floor(yin+s);
  var G2 = (3.0-Math.sqrt(3.0))/6.0;
  var t = (i+j)*G2;
  var X0 = i-t; // Unskew the cell origin back to (x,y) space
  var Y0 = j-t;
  var x0 = xin-X0; // The x,y distances from the cell origin
  var y0 = yin-Y0;
  // For the 2D case, the simplex shape is an equilateral triangle.
  // Determine which simplex we are in.
  var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
  if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
  else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
  // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
  // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
  // c = (3-sqrt(3))/6
  var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
  var y1 = y0 - j1 + G2;
  var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
  var y2 = y0 - 1.0 + 2.0 * G2;
  // Work out the hashed gradient indices of the three simplex corners
  var ii = i & 255;
  var jj = j & 255;
  var gi0 = this.perm[ii+this.perm[jj]] % 12;
  var gi1 = this.perm[ii+i1+this.perm[jj+j1]] % 12;
  var gi2 = this.perm[ii+1+this.perm[jj+1]] % 12;
  // Calculate the contribution from the three corners
  var t0 = 0.5 - x0*x0-y0*y0;
  if(t0<0) n0 = 0.0;
  else {
    t0 *= t0;
    n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
  }
  var t1 = 0.5 - x1*x1-y1*y1;
  if(t1<0) n1 = 0.0;
  else {
    t1 *= t1;
    n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1);
  }
  var t2 = 0.5 - x2*x2-y2*y2;
  if(t2<0) n2 = 0.0;
  else {
    t2 *= t2;
    n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2);
  }
  // Add contributions from each corner to get the final noise value.
  // The result is scaled to return values in the interval [-1,1].
  return 70.0 * (n0 + n1 + n2);
};

// 3D simplex noise
SimplexNoise.prototype.noise3d = function(xin, yin, zin) {
  var n0, n1, n2, n3; // Noise contributions from the four corners
  // Skew the input space to determine which simplex cell we're in
  var F3 = 1.0/3.0;
  var s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D
  var i = Math.floor(xin+s);
  var j = Math.floor(yin+s);
  var k = Math.floor(zin+s);
  var G3 = 1.0/6.0; // Very nice and simple unskew factor, too
  var t = (i+j+k)*G3;
  var X0 = i-t; // Unskew the cell origin back to (x,y,z) space
  var Y0 = j-t;
  var Z0 = k-t;
  var x0 = xin-X0; // The x,y,z distances from the cell origin
  var y0 = yin-Y0;
  var z0 = zin-Z0;
  // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
  // Determine which simplex we are in.
  var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
  var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
  if(x0>=y0) {
    if(y0>=z0)
      { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
      else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
      else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
    }
  else { // x0<y0
    if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
    else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
    else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
  }
  // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
  // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
  // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
  // c = 1/6.
  var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
  var y1 = y0 - j1 + G3;
  var z1 = z0 - k1 + G3;
  var x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
  var y2 = y0 - j2 + 2.0*G3;
  var z2 = z0 - k2 + 2.0*G3;
  var x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
  var y3 = y0 - 1.0 + 3.0*G3;
  var z3 = z0 - 1.0 + 3.0*G3;
  // Work out the hashed gradient indices of the four simplex corners
  var ii = i & 255;
  var jj = j & 255;
  var kk = k & 255;
  var gi0 = this.perm[ii+this.perm[jj+this.perm[kk]]] % 12;
  var gi1 = this.perm[ii+i1+this.perm[jj+j1+this.perm[kk+k1]]] % 12;
  var gi2 = this.perm[ii+i2+this.perm[jj+j2+this.perm[kk+k2]]] % 12;
  var gi3 = this.perm[ii+1+this.perm[jj+1+this.perm[kk+1]]] % 12;
  // Calculate the contribution from the four corners
  var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
  if(t0<0) n0 = 0.0;
  else {
    t0 *= t0;
    n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0, z0);
  }
  var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
  if(t1<0) n1 = 0.0;
  else {
    t1 *= t1;
    n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1, z1);
  }
  var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
  if(t2<0) n2 = 0.0;
  else {
    t2 *= t2;
    n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2, z2);
  }
  var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
  if(t3<0) n3 = 0.0;
  else {
    t3 *= t3;
    n3 = t3 * t3 * this.dot(this.grad3[gi3], x3, y3, z3);
  }
  // Add contributions from each corner to get the final noise value.
  // The result is scaled to stay just inside [-1,1]
  return 32.0*(n0 + n1 + n2 + n3);
};

Кроме того, если вы используете PRNG с этим, вы можете легко получить легко восстанавливаемые результаты

/*
  I've wrapped Makoto Matsumoto and Takuji Nishimura's code in a namespace
  so it's better encapsulated. Now you can have multiple random number generators
  and they won't stomp all over eachother's state.

  If you want to use this as a substitute for Math.random(), use the random()
  method like so:

  var m = new MersenneTwister();
  var randomNumber = m.random();

  You can also call the other genrand_{foo}() methods on the instance.

  If you want to use a specific seed in order to get a repeatable random
  sequence, pass an integer into the constructor:

  var m = new MersenneTwister(123);

  and that will always produce the same random sequence.

  Sean McCullough (banksean@gmail.com)
*/

/* 
   A C-program for MT19937, with initialization improved 2002/1/26.
   Coded by Takuji Nishimura and Makoto Matsumoto.

   Before using, initialize the state by using init_genrand(seed)  
   or init_by_array(init_key, key_length).

   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
   All rights reserved.                          

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

     1. Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.

     2. Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.

     3. The names of its contributors may not be used to endorse or promote 
        products derived from this software without specific prior written 
        permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


   Any feedback is very welcome.
   http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
   email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/

var MersenneTwister = function(seed) {
  if (seed == undefined) {
    seed = new Date().getTime();
  } 
  /* Period parameters */  
  this.N = 624;
  this.M = 397;
  this.MATRIX_A = 0x9908b0df;   /* constant vector a */
  this.UPPER_MASK = 0x80000000; /* most significant w-r bits */
  this.LOWER_MASK = 0x7fffffff; /* least significant r bits */

  this.mt = new Array(this.N); /* the array for the state vector */
  this.mti=this.N+1; /* mti==N+1 means mt[N] is not initialized */

  this.init_genrand(seed);
}  

/* initializes mt[N] with a seed */
MersenneTwister.prototype.init_genrand = function(s) {
  this.mt[0] = s >>> 0;
  for (this.mti=1; this.mti<this.N; this.mti++) {
      var s = this.mt[this.mti-1] ^ (this.mt[this.mti-1] >>> 30);
   this.mt[this.mti] = (((((s & 0xffff0000) >>> 16) * 1812433253) << 16) + (s & 0x0000ffff) * 1812433253)
  + this.mti;
      /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
      /* In the previous versions, MSBs of the seed affect   */
      /* only MSBs of the array mt[].                        */
      /* 2002/01/09 modified by Makoto Matsumoto             */
      this.mt[this.mti] >>>= 0;
      /* for >32 bit machines */
  }
}

/* initialize by an array with array-length */
/* init_key is the array for initializing keys */
/* key_length is its length */
/* slight change for C++, 2004/2/26 */
MersenneTwister.prototype.init_by_array = function(init_key, key_length) {
  var i, j, k;
  this.init_genrand(19650218);
  i=1; j=0;
  k = (this.N>key_length ? this.N : key_length);
  for (; k; k--) {
    var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30)
    this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1664525) << 16) + ((s & 0x0000ffff) * 1664525)))
      + init_key[j] + j; /* non linear */
    this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */
    i++; j++;
    if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; }
    if (j>=key_length) j=0;
  }
  for (k=this.N-1; k; k--) {
    var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30);
    this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1566083941) << 16) + (s & 0x0000ffff) * 1566083941))
      - i; /* non linear */
    this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */
    i++;
    if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; }
  }

  this.mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */ 
}

/* generates a random number on [0,0xffffffff]-interval */
MersenneTwister.prototype.genrand_int32 = function() {
  var y;
  var mag01 = new Array(0x0, this.MATRIX_A);
  /* mag01[x] = x * MATRIX_A  for x=0,1 */

  if (this.mti >= this.N) { /* generate N words at one time */
    var kk;

    if (this.mti == this.N+1)   /* if init_genrand() has not been called, */
      this.init_genrand(5489); /* a default initial seed is used */

    for (kk=0;kk<this.N-this.M;kk++) {
      y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK);
      this.mt[kk] = this.mt[kk+this.M] ^ (y >>> 1) ^ mag01[y & 0x1];
    }
    for (;kk<this.N-1;kk++) {
      y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK);
      this.mt[kk] = this.mt[kk+(this.M-this.N)] ^ (y >>> 1) ^ mag01[y & 0x1];
    }
    y = (this.mt[this.N-1]&this.UPPER_MASK)|(this.mt[0]&this.LOWER_MASK);
    this.mt[this.N-1] = this.mt[this.M-1] ^ (y >>> 1) ^ mag01[y & 0x1];

    this.mti = 0;
  }

  y = this.mt[this.mti++];

  /* Tempering */
  y ^= (y >>> 11);
  y ^= (y << 7) & 0x9d2c5680;
  y ^= (y << 15) & 0xefc60000;
  y ^= (y >>> 18);

  return y >>> 0;
}

/* generates a random number on [0,0x7fffffff]-interval */
MersenneTwister.prototype.genrand_int31 = function() {
  return (this.genrand_int32()>>>1);
}

/* generates a random number on [0,1]-real-interval */
MersenneTwister.prototype.genrand_real1 = function() {
  return this.genrand_int32()*(1.0/4294967295.0); 
  /* divided by 2^32-1 */ 
}

/* generates a random number on [0,1)-real-interval */
MersenneTwister.prototype.random = function() {
  return this.genrand_int32()*(1.0/4294967296.0); 
  /* divided by 2^32 */
}

/* generates a random number on (0,1)-real-interval */
MersenneTwister.prototype.genrand_real3 = function() {
  return (this.genrand_int32() + 0.5)*(1.0/4294967296.0); 
  /* divided by 2^32 */
}

/* generates a random number on [0,1) with 53-bit resolution*/
MersenneTwister.prototype.genrand_res53 = function() { 
  var a=this.genrand_int32()>>>5, b=this.genrand_int32()>>>6; 
  return(a*67108864.0+b)*(1.0/9007199254740992.0); 
} 

/* These real versions are due to Isaku Wada, 2002/01/09 added */

0

Используйте предварительно сгенерированные текстуры или поместите генератор текстуры шума perlin на сервер и запросите его для изображений шума perlin.


Я уже делаю это на сервере, и мне нужно, чтобы текстуры были сгенерированы.
Xeon06

Если вы делаете это на сервере, почему требование javascript? Какие еще технологии вы можете использовать?
Сэм Хочевар

@ SamHocevar Я делаю это на JavaScript, на сервере. Node.js.
Xeon06

@ Xenon06: если вы после производительности, я действительно думаю, что вам понадобится нативный код; К счастью, вы можете написать расширения Node.js на C ++ .
Сэм Хочевар

@SamHocevar круто, спасибо за ссылку, я проверю, если мой
перф
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.