1
Почему байесовский апостериор концентрируется вокруг минимизатора расхождения KL?
Рассмотрим Байеса задней . Асимптотически его максимум возникает при оценке MLE , которая просто максимизирует вероятность .θ∣Xθ∣X\theta\mid Xθ^θ^\hat \thetaargminθfθ(X)argminθfθ(X)\operatorname{argmin}_\theta\, f_\theta(X) Все эти концепции - байесовские априоры, максимизирующие вероятность - звучат сверхпринципно и вовсе не произвольно. Там не журнал в поле зрения. Тем не менее, MLE минимизирует расхождение KL между реальным …