У меня есть вопрос, касающийся интерпретации параметров для GLM с гамма-распределенной зависимой переменной. Вот что R возвращает для моего GLM с лог-ссылкой:
Call:
glm(formula = income ~ height + age + educat + married + sex + language + highschool,
family = Gamma(link = log), data = fakesoep)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.47399 -0.31490 -0.05961 0.18374 1.94176
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.2202325 0.2182771 28.497 < 2e-16 ***
height 0.0082530 0.0011930 6.918 5.58e-12 ***
age 0.0001786 0.0009345 0.191 0.848
educat 0.0119425 0.0009816 12.166 < 2e-16 ***
married -0.0178813 0.0173453 -1.031 0.303
sex -0.3179608 0.0216168 -14.709 < 2e-16 ***
language 0.0050755 0.0279452 0.182 0.856
highschool 0.3466434 0.0167621 20.680 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Gamma family taken to be 0.1747557)
Null deviance: 757.46 on 2999 degrees of freedom
Residual deviance: 502.50 on 2992 degrees of freedom
AIC: 49184
Как мне интерпретировать параметры? Если я вычислю exp(coef())
мою модель, я получу ~ 500 за перехват. Теперь я считаю, что это не означает ожидаемый доход, если все остальные переменные остаются постоянными, не так ли? Поскольку среднее значение или mean(age)
составляет около 2000. Более того, я понятия не имею, как интерпретировать направление и значение коэффициентов ковариат.