Я знаю, что ошибка типа II - это то, где H1 истинно, но H0 не отклоняется.
Вопрос
Как рассчитать вероятность ошибки типа II, связанной с нормальным распределением, где известно стандартное отклонение?
Я знаю, что ошибка типа II - это то, где H1 истинно, но H0 не отклоняется.
Как рассчитать вероятность ошибки типа II, связанной с нормальным распределением, где известно стандартное отклонение?
Ответы:
В дополнение к указанию (вероятности ошибки типа I) вам нужна полностью определенная пара гипотез, т.е. необходимо знать , и . (вероятность ошибки типа II) равна . Я предполагаю односторонний . В R:
> sigma <- 15 # theoretical standard deviation
> mu0 <- 100 # expected value under H0
> mu1 <- 130 # expected value under H1
> alpha <- 0.05 # probability of type I error
# critical value for a level alpha test
> crit <- qnorm(1-alpha, mu0, sigma)
# power: probability for values > critical value under H1
> (pow <- pnorm(crit, mu1, sigma, lower.tail=FALSE))
[1] 0.63876
# probability for type II error: 1 - power
> (beta <- 1-pow)
[1] 0.36124
Редактировать: визуализация
xLims <- c(50, 180)
left <- seq(xLims[1], crit, length.out=100)
right <- seq(crit, xLims[2], length.out=100)
yH0r <- dnorm(right, mu0, sigma)
yH1l <- dnorm(left, mu1, sigma)
yH1r <- dnorm(right, mu1, sigma)
curve(dnorm(x, mu0, sigma), xlim=xLims, lwd=2, col="red", xlab="x", ylab="density",
main="Normal distribution under H0 and H1", ylim=c(0, 0.03), xaxs="i")
curve(dnorm(x, mu1, sigma), lwd=2, col="blue", add=TRUE)
polygon(c(right, rev(right)), c(yH0r, numeric(length(right))), border=NA,
col=rgb(1, 0.3, 0.3, 0.6))
polygon(c(left, rev(left)), c(yH1l, numeric(length(left))), border=NA,
col=rgb(0.3, 0.3, 1, 0.6))
polygon(c(right, rev(right)), c(yH1r, numeric(length(right))), border=NA,
density=5, lty=2, lwd=2, angle=45, col="darkgray")
abline(v=crit, lty=1, lwd=3, col="red")
text(crit+1, 0.03, adj=0, label="critical value")
text(mu0-10, 0.025, adj=1, label="distribution under H0")
text(mu1+10, 0.025, adj=0, label="distribution under H1")
text(crit+8, 0.01, adj=0, label="power", cex=1.3)
text(crit-12, 0.004, expression(beta), cex=1.3)
text(crit+5, 0.0015, expression(alpha), cex=1.3)
lower.tail=FALSE
пропал без вести. Большое спасибо!
В дополнение к ответу Каракала, если вы ищете удобный для пользователя вариант с графическим интерфейсом для расчета частоты ошибок типа II или мощности для многих распространенных конструкций, включая те, которые подразумеваются вашим вопросом, вы можете попробовать бесплатное программное обеспечение G Power 3 .