Каково распределение суммы неидеальных гауссовых переменных?


36

Если X распределен N(μX,σX2) , Y распределен N(μY,σY2) и Z=X+Y , я знаю , что Z распределен N(μX+μY,σX2+σY2) если X и Y независимы.

Но что произойдет, если X и Y не будут независимыми, то есть (X,Y)N((μXμY),(σX2σX,YσX,YσY2))

Повлияет ли это на распределение суммы Z ?


7
Просто хотелось бы отметить, что все виды совместных распределений другой , чем двумерным нормальным , что до сих пор X и Y незначительно нормально. И это различие будет иметь огромное значение для ответов. (X,Y) XY

2
@ G.JayKerns Я согласен с тем, что если и Y нормальные, но не обязательно совместно нормальные, то X + Y может иметь распределение, отличное от нормального. Но заявление о том , что OP " Z распределен N ( μ х + μ у , сг 2 х + сг 2 у ) , если X и Y независимы." абсолютно правильно. Если X и YXYX+YZN(μx+μy,σx2+σy2)XYXYявляются незначительно нормальными (как говорится в первой части предложения) и независимыми (согласно предположению во второй части предложения), тогда они также в целом нормальны. В вопросе OP совместная нормальность предполагается явно, и поэтому любая линейная комбинация и Y является нормальной. XY
Дилип Сарват

3
@Dilip, let me be clear that there is nothing wrong with the question and there is nothing wrong with your answer (+1) (or probability's, either (+1)). I was simply pointing out that if X and Y are dependent then it isn't necessary that they are jointly normal, and it wasn't clear that the OP had considered that possibility. In addition, I am afraid (though I haven't spent a lot of time thinking) that without some other assumptions (like joint normality) the question might even be unanswerable.

5
As @G.JayKerns mentions, of course we can get all sorts of interesting behavior if we consider marginally, but not jointly, distributed normals. Here is a simple example: Let X be standard normal and ε=±1 with probability 1/2 each, independently of X. Let Y=εX. Then Y is also standard normal, but Z=X+Y is exactly equal to zero with probability 1/2 and is equal to 2X with probability 1/2.
cardinal

4
We can get a whole variety of different behaviors by considering the bivariate copula that is associated with (X,Y) via Sklar's theorem. If we use the Gaussian copula, then we get (X,Y) are jointly normal, and so Z=X+Y is normally distributed. If the copula is not the Gaussian copula, then X and Y are each still marginally distributed as normals, but are not jointly normal and so the sum will not be normally distributed, in general.
cardinal

Ответы:


30

See my comment on probabilityislogic's answer to this question. Here,

X+YN(μX+μY,σX2+σY2+2σX,Y)aX+bYN(aμX+bμY,a2σX2+b2σY2+2abσX,Y)
where σX,Y is the covariance of X and Y. Nobody writes the off-diagonal entries in the covariance matrix as σxy2 as you have done. The off-diagonal entries are covariances which can be negative.

1
@Kodiologist Thanks! I am surprised that the typos remained unnoticed for more than 4 years.
Dilip Sarwate

29

@dilip's answer is sufficient, but I just thought I'd add some details on how you get to the result. We can use the method of characteristic functions. For any d-dimensional multivariate normal distribution XNd(μ,Σ) where μ=(μ1,,μd)T and Σjk=cov(Xj,Xk)j,k=1,,d, the characteristic function is given by:

φX(t)=E[exp(itTX)]=exp(itTμ12tTΣt)
=exp(ij=1dtjμj12j=1dk=1dtjtkΣjk)

For a one-dimensional normal variable YN1(μY,σY2) we get:

φY(t)=exp(itμY12t2σY2)

Now, suppose we define a new random variable Z=aTX=j=1dajXj. For your case, we have d=2 and a1=a2=1. The characteristic function for Z is the basically the same as that for X.

φZ(t)=E[exp(itZ)]=E[exp(itaTX)]=φX(ta)
=exp(itj=1dajμj12t2j=1dk=1dajakΣjk)

If we compare this characteristic function with the characteristic function φY(t) we see that they are the same, but with μY being replaced by μZ=j=1dajμj and with σY2 being replaced by σZ2=j=1dk=1dajakΣjk. Hence because the characteristic function of Z is equivalent to the characteristic function of Y, the distributions must also be equal. Hence Z is normally distributed. We can simplify the expression for the variance by noting that Σjk=Σkj and we get:

σZ2=j=1daj2Σjj+2j=2dk=1j1ajakΣjk

This is also the general formula for the variance of a linear combination of any set of random variables, independent or not, normal or not, where Σjj=var(Xj) and Σjk=cov(Xj,Xk). Now if we specialise to d=2 and a1=a2=1, the above formula becomes:

σZ2=j=12(1)2Σjj+2j=22k=1j1(1)(1)Σjk=Σ11+Σ22+2Σ21

2
+1 Thanks for taking the time to write out the details. Can this question be made part of the FAQ?
Dilip Sarwate
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.