Быстрое и емкое tidyverse
решение: (более чем в два раза быстрее, чем Base R read.csv
)
tbl <-
list.files(pattern = "*.csv") %>%
map_df(~read_csv(.))
и data.table «s fread()
может даже сократить те времена нагрузки наполовину снова. (для 1/4 базового R раз)
library(data.table)
tbl_fread <-
list.files(pattern = "*.csv") %>%
map_df(~fread(.))
stringsAsFactors = FALSE
Аргумент сохраняет фактор dataframe бесплатно (и , как Marbel указывает, является настройкой по умолчанию fread
)
Если приведение типов является нахальным, вы можете заставить все столбцы быть символами с col_types
аргументом.
tbl <-
list.files(pattern = "*.csv") %>%
map_df(~read_csv(., col_types = cols(.default = "c")))
Если вы хотите заглянуть в подкаталоги, чтобы составить список файлов для последующей привязки, обязательно укажите путь к файлу, а также зарегистрируйте файлы с их полными именами в списке. Это позволит выполнять связывание за пределами текущего каталога. (Думая о полных путевых именах, действующих как паспорта, чтобы разрешить перемещение обратно через «границы» каталога.)
tbl <-
list.files(path = "./subdirectory/",
pattern = "*.csv",
full.names = T) %>%
map_df(~read_csv(., col_types = cols(.default = "c")))
Как Хэдли описывает здесь (примерно на полпути):
map_df(x, f)
фактически так же, как do.call("rbind", lapply(x, f))
....
Бонусная функция - добавление имен файлов к записям по запросу функции Никса в комментариях ниже:
* Добавьте оригинал filename
к каждой записи.
Объясненный код: создайте функцию для добавления имени файла к каждой записи во время первоначального чтения таблиц. Затем используйте эту функцию вместо простой read_csv()
функции.
read_plus <- function(flnm) {
read_csv(flnm) %>%
mutate(filename = flnm)
}
tbl_with_sources <-
list.files(pattern = "*.csv",
full.names = T) %>%
map_df(~read_plus(.))
(Подходы обработки типов и подкаталогов могут также обрабатываться внутри read_plus()
функции таким же образом, как показано во втором и третьем вариантах, предложенных выше.)
### Benchmark Code & Results
library(tidyverse)
library(data.table)
library(microbenchmark)
### Base R Approaches
#### Instead of a dataframe, this approach creates a list of lists
#### removed from analysis as this alone doubled analysis time reqd
# lapply_read.delim <- function(path, pattern = "*.csv") {
# temp = list.files(path, pattern, full.names = TRUE)
# myfiles = lapply(temp, read.delim)
# }
#### `read.csv()`
do.call_rbind_read.csv <- function(path, pattern = "*.csv") {
files = list.files(path, pattern, full.names = TRUE)
do.call(rbind, lapply(files, function(x) read.csv(x, stringsAsFactors = FALSE)))
}
map_df_read.csv <- function(path, pattern = "*.csv") {
list.files(path, pattern, full.names = TRUE) %>%
map_df(~read.csv(., stringsAsFactors = FALSE))
}
### *dplyr()*
#### `read_csv()`
lapply_read_csv_bind_rows <- function(path, pattern = "*.csv") {
files = list.files(path, pattern, full.names = TRUE)
lapply(files, read_csv) %>% bind_rows()
}
map_df_read_csv <- function(path, pattern = "*.csv") {
list.files(path, pattern, full.names = TRUE) %>%
map_df(~read_csv(., col_types = cols(.default = "c")))
}
### *data.table* / *purrr* hybrid
map_df_fread <- function(path, pattern = "*.csv") {
list.files(path, pattern, full.names = TRUE) %>%
map_df(~fread(.))
}
### *data.table*
rbindlist_fread <- function(path, pattern = "*.csv") {
files = list.files(path, pattern, full.names = TRUE)
rbindlist(lapply(files, function(x) fread(x)))
}
do.call_rbind_fread <- function(path, pattern = "*.csv") {
files = list.files(path, pattern, full.names = TRUE)
do.call(rbind, lapply(files, function(x) fread(x, stringsAsFactors = FALSE)))
}
read_results <- function(dir_size){
microbenchmark(
# lapply_read.delim = lapply_read.delim(dir_size), # too slow to include in benchmarks
do.call_rbind_read.csv = do.call_rbind_read.csv(dir_size),
map_df_read.csv = map_df_read.csv(dir_size),
lapply_read_csv_bind_rows = lapply_read_csv_bind_rows(dir_size),
map_df_read_csv = map_df_read_csv(dir_size),
rbindlist_fread = rbindlist_fread(dir_size),
do.call_rbind_fread = do.call_rbind_fread(dir_size),
map_df_fread = map_df_fread(dir_size),
times = 10L)
}
read_results_lrg_mid_mid <- read_results('./testFolder/500MB_12.5MB_40files')
print(read_results_lrg_mid_mid, digits = 3)
read_results_sml_mic_mny <- read_results('./testFolder/5MB_5KB_1000files/')
read_results_sml_tny_mod <- read_results('./testFolder/5MB_50KB_100files/')
read_results_sml_sml_few <- read_results('./testFolder/5MB_500KB_10files/')
read_results_med_sml_mny <- read_results('./testFolder/50MB_5OKB_1000files')
read_results_med_sml_mod <- read_results('./testFolder/50MB_5OOKB_100files')
read_results_med_med_few <- read_results('./testFolder/50MB_5MB_10files')
read_results_lrg_sml_mny <- read_results('./testFolder/500MB_500KB_1000files')
read_results_lrg_med_mod <- read_results('./testFolder/500MB_5MB_100files')
read_results_lrg_lrg_few <- read_results('./testFolder/500MB_50MB_10files')
read_results_xlg_lrg_mod <- read_results('./testFolder/5000MB_50MB_100files')
print(read_results_sml_mic_mny, digits = 3)
print(read_results_sml_tny_mod, digits = 3)
print(read_results_sml_sml_few, digits = 3)
print(read_results_med_sml_mny, digits = 3)
print(read_results_med_sml_mod, digits = 3)
print(read_results_med_med_few, digits = 3)
print(read_results_lrg_sml_mny, digits = 3)
print(read_results_lrg_med_mod, digits = 3)
print(read_results_lrg_lrg_few, digits = 3)
print(read_results_xlg_lrg_mod, digits = 3)
# display boxplot of my typical use case results & basic machine max load
par(oma = c(0,0,0,0)) # remove overall margins if present
par(mfcol = c(1,1)) # remove grid if present
par(mar = c(12,5,1,1) + 0.1) # to display just a single boxplot with its complete labels
boxplot(read_results_lrg_mid_mid, las = 2, xlab = "", ylab = "Duration (seconds)", main = "40 files @ 12.5MB (500MB)")
boxplot(read_results_xlg_lrg_mod, las = 2, xlab = "", ylab = "Duration (seconds)", main = "100 files @ 50MB (5GB)")
# generate 3x3 grid boxplots
par(oma = c(12,1,1,1)) # margins for the whole 3 x 3 grid plot
par(mfcol = c(3,3)) # create grid (filling down each column)
par(mar = c(1,4,2,1)) # margins for the individual plots in 3 x 3 grid
boxplot(read_results_sml_mic_mny, las = 2, xlab = "", ylab = "Duration (seconds)", main = "1000 files @ 5KB (5MB)", xaxt = 'n')
boxplot(read_results_sml_tny_mod, las = 2, xlab = "", ylab = "Duration (milliseconds)", main = "100 files @ 50KB (5MB)", xaxt = 'n')
boxplot(read_results_sml_sml_few, las = 2, xlab = "", ylab = "Duration (milliseconds)", main = "10 files @ 500KB (5MB)",)
boxplot(read_results_med_sml_mny, las = 2, xlab = "", ylab = "Duration (microseconds) ", main = "1000 files @ 50KB (50MB)", xaxt = 'n')
boxplot(read_results_med_sml_mod, las = 2, xlab = "", ylab = "Duration (microseconds)", main = "100 files @ 500KB (50MB)", xaxt = 'n')
boxplot(read_results_med_med_few, las = 2, xlab = "", ylab = "Duration (seconds)", main = "10 files @ 5MB (50MB)")
boxplot(read_results_lrg_sml_mny, las = 2, xlab = "", ylab = "Duration (seconds)", main = "1000 files @ 500KB (500MB)", xaxt = 'n')
boxplot(read_results_lrg_med_mod, las = 2, xlab = "", ylab = "Duration (seconds)", main = "100 files @ 5MB (500MB)", xaxt = 'n')
boxplot(read_results_lrg_lrg_few, las = 2, xlab = "", ylab = "Duration (seconds)", main = "10 files @ 50MB (500MB)")
Середина использования
Большой вариант использования
Разнообразие вариантов использования
Строки: количество файлов (1000, 100, 10)
Столбцы: конечный размер кадра данных (5 МБ, 50 МБ, 500 МБ)
(нажмите на изображение, чтобы посмотреть оригинальный размер)
Базовые результаты R лучше для самых маленьких случаев использования, когда издержки, связанные с переносом библиотек C purrr и dplyr, перевешивают выигрыш в производительности, который наблюдается при выполнении более масштабных задач обработки.
если вы хотите запускать свои собственные тесты, вам может пригодиться этот скрипт bash.
for ((i=1; i<=$2; i++)); do
cp "$1" "${1:0:8}_${i}.csv";
done
bash what_you_name_this_script.sh "fileName_you_want_copied" 100
создаст 100 копий вашего файла с последовательной нумерацией (после начальных 8 символов имени файла и подчеркивания).
Атрибуты и благодарности
С особой благодарностью:
- Тайлер Ринкер и Акрун за демонстрацию микробенчмарка.
- Джейка Кауппа за то, что он представил меня
map_df()
здесь .
- Дэвида Маклафлина (David McLaughlin) за полезные отзывы об улучшении визуализаций и обсуждении / подтверждении инверсий производительности, наблюдаемых в небольшом файле, результаты анализа небольших данных.
- Марбель за указание поведения по умолчанию для
fread()
. (Мне нужно учиться data.table
.)