Это почти дубликат Как интерпретировать результаты GRASS v.kernel? , но он немного отличается в запросе интерпретации с точки зрения радиуса поиска. Давай поговорим об этом.
Плотность ядра - это свертка , как объяснено в 1 , 2 и 3 . В нетехнических терминах это означает, что значение каждой ячейки входной сетки распространяется вокруг ее окрестности. «Ядро» - это функция, которая описывает форму распространения. Думайте о значении как о записи высоты песка, налитого в коробку на основе ячейки. Если бы вы убрали коробку, песок упал бы. Ядро говорит, какую форму оно приобретет; количество песка определяет, насколько высока эта форма. Самостоятельно повторите этот процесс для каждой ячейки в сетке, позволяя кучам песка накапливаться вертикально (без каких-либо дополнительных оползней от перекрытия).
Из этого описания мы можем вывести ответы на два вопроса, поставленных здесь:
В зависимости от программного обеспечения выходные значения дают либо общее количество песка в каждой ячейке, либо - чаще - количество на единицу площади. (Это то, что означает «плотность».) Лучше использовать вывод на единицу площади, поскольку он не изменяется заметно при изменении размера выходных ячеек. Например, если вы уменьшите размер выходных ячеек пополам, каждая ячейка занимает только одну четвертую своего прежнего размера, поэтому обычно она покрыта только примерно одной четвертью песка. Однако когда вы выражаете выходной сигнал в виде песка на единицу площади, это не меняется: вы получаете четверть песка в одной четверти первоначальной площади, откуда соотношение одинаково.
«Радиус поиска» (уникальный термин, принятый некоторыми поставщиками ГИС; в литературе используются относящиеся к нему количества, известные как «полуширина» ядра или «полная ширина на половине максимума»), описывает степень распространения. Независимо от того, как это выражено, если вы хотите расширить исходные значения ячеек вдвое, вы в конечном итоге охватите четырераз площадь больше. Когда вы распространяете значение одной ячейки, результирующая куча будет только на четверть выше в каждой точке. Тем не менее, в большинстве случаев плотность распространения имеет более сложную связь с меньшей плотностью распространения, потому что груды «песка» - хотя и по отдельности меньше - получают вклады от ячеек, которые находятся дальше. В целом, эффекты уравновешиваются. То, что вы видите, заключается в том, что большее распространение создает выходные сетки, которые изменяются более плавно, тогда как меньшее распространение создает выходные сетки, которые локально более изменчивы.
Эти рисунки иллюстрируют влияние изменения радиуса (для ядра Гаусса) на разреженную входную сетку, имеющую значения 0 или 1.
Изображение и некоторые его плотности ядра Гаусса
Темнота отображает значения сетки (черный = 1, белый = 0). Все изображения 16 на 16.
Такой же рисунок показан в виде трехмерных графиков значений сетки
Высота отображает значения сетки. Все графики приведены для общего сравнения. Этот метод построения графика показывает исходные кучи «песка» в виде конусов, а не в виде коробок.