Когда у меня возникла эта проблема во время работы над моими кубами , я обнаружил статью «Быстрый алгоритм обхода вокселей для трассировки лучей» Джона Аманатида и Эндрю Ву, 1987 г., в которой описывается алгоритм, который можно применить к этой задаче; он точен и требует только одной итерации цикла на пересеченный воксель.
Я написал реализацию соответствующих частей алгоритма статьи на JavaScript. Моя реализация добавляет две функции: она позволяет указать ограничение на расстояние лучевой трансляции (полезно для избежания проблем с производительностью, а также для определения ограниченного «охвата»), а также вычисляет, какая грань каждого вокселя введена лучом.
Входной origin
вектор должен быть масштабирован таким образом, чтобы длина стороны вокселя была равна 1. Длина direction
вектора не является существенной, но может повлиять на числовую точность алгоритма.
Алгоритм работает с использованием параметризованного представления луча origin + t * direction
. Для каждой оси координат, мы продолжаем отслеживать t
значение , которое мы имели бы , если бы мы сделали шаг достаточного , чтобы пересечь границу вокселей вдоль этой оси (то есть изменение целой части координат) в переменных tMaxX
, tMaxY
и tMaxZ
. Затем, мы делаем шаг (используя step
и tDelta
переменные) , вдоль какой оси имеет наименьшее tMax
- то есть в зависимости от того вокселей-граница ближе.
/**
* Call the callback with (x,y,z,value,face) of all blocks along the line
* segment from point 'origin' in vector direction 'direction' of length
* 'radius'. 'radius' may be infinite.
*
* 'face' is the normal vector of the face of that block that was entered.
* It should not be used after the callback returns.
*
* If the callback returns a true value, the traversal will be stopped.
*/
function raycast(origin, direction, radius, callback) {
// From "A Fast Voxel Traversal Algorithm for Ray Tracing"
// by John Amanatides and Andrew Woo, 1987
// <http://www.cse.yorku.ca/~amana/research/grid.pdf>
// <http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.3443>
// Extensions to the described algorithm:
// • Imposed a distance limit.
// • The face passed through to reach the current cube is provided to
// the callback.
// The foundation of this algorithm is a parameterized representation of
// the provided ray,
// origin + t * direction,
// except that t is not actually stored; rather, at any given point in the
// traversal, we keep track of the *greater* t values which we would have
// if we took a step sufficient to cross a cube boundary along that axis
// (i.e. change the integer part of the coordinate) in the variables
// tMaxX, tMaxY, and tMaxZ.
// Cube containing origin point.
var x = Math.floor(origin[0]);
var y = Math.floor(origin[1]);
var z = Math.floor(origin[2]);
// Break out direction vector.
var dx = direction[0];
var dy = direction[1];
var dz = direction[2];
// Direction to increment x,y,z when stepping.
var stepX = signum(dx);
var stepY = signum(dy);
var stepZ = signum(dz);
// See description above. The initial values depend on the fractional
// part of the origin.
var tMaxX = intbound(origin[0], dx);
var tMaxY = intbound(origin[1], dy);
var tMaxZ = intbound(origin[2], dz);
// The change in t when taking a step (always positive).
var tDeltaX = stepX/dx;
var tDeltaY = stepY/dy;
var tDeltaZ = stepZ/dz;
// Buffer for reporting faces to the callback.
var face = vec3.create();
// Avoids an infinite loop.
if (dx === 0 && dy === 0 && dz === 0)
throw new RangeError("Raycast in zero direction!");
// Rescale from units of 1 cube-edge to units of 'direction' so we can
// compare with 't'.
radius /= Math.sqrt(dx*dx+dy*dy+dz*dz);
while (/* ray has not gone past bounds of world */
(stepX > 0 ? x < wx : x >= 0) &&
(stepY > 0 ? y < wy : y >= 0) &&
(stepZ > 0 ? z < wz : z >= 0)) {
// Invoke the callback, unless we are not *yet* within the bounds of the
// world.
if (!(x < 0 || y < 0 || z < 0 || x >= wx || y >= wy || z >= wz))
if (callback(x, y, z, blocks[x*wy*wz + y*wz + z], face))
break;
// tMaxX stores the t-value at which we cross a cube boundary along the
// X axis, and similarly for Y and Z. Therefore, choosing the least tMax
// chooses the closest cube boundary. Only the first case of the four
// has been commented in detail.
if (tMaxX < tMaxY) {
if (tMaxX < tMaxZ) {
if (tMaxX > radius) break;
// Update which cube we are now in.
x += stepX;
// Adjust tMaxX to the next X-oriented boundary crossing.
tMaxX += tDeltaX;
// Record the normal vector of the cube face we entered.
face[0] = -stepX;
face[1] = 0;
face[2] = 0;
} else {
if (tMaxZ > radius) break;
z += stepZ;
tMaxZ += tDeltaZ;
face[0] = 0;
face[1] = 0;
face[2] = -stepZ;
}
} else {
if (tMaxY < tMaxZ) {
if (tMaxY > radius) break;
y += stepY;
tMaxY += tDeltaY;
face[0] = 0;
face[1] = -stepY;
face[2] = 0;
} else {
// Identical to the second case, repeated for simplicity in
// the conditionals.
if (tMaxZ > radius) break;
z += stepZ;
tMaxZ += tDeltaZ;
face[0] = 0;
face[1] = 0;
face[2] = -stepZ;
}
}
}
}
function intbound(s, ds) {
// Find the smallest positive t such that s+t*ds is an integer.
if (ds < 0) {
return intbound(-s, -ds);
} else {
s = mod(s, 1);
// problem is now s+t*ds = 1
return (1-s)/ds;
}
}
function signum(x) {
return x > 0 ? 1 : x < 0 ? -1 : 0;
}
function mod(value, modulus) {
return (value % modulus + modulus) % modulus;
}
Постоянная ссылка на эту версию источника на GitHub .