Вопросы с тегом «loss-function»

5
Почему функции стоимости используют квадратную ошибку?
Я только начинаю с машинного обучения, и до сих пор я имел дело с линейной регрессией по одной переменной. Я узнал, что существует гипотеза: часθ( х ) = θ0+ θ1Иксhθ(x)=θ0+θ1xh_\theta(x)=\theta_0+\theta_1x Чтобы найти хорошие значения для параметров и мы хотим минимизировать разницу между вычисленным результатом и фактическим результатом наших тестовых данных. …

4
Интуитивно понятное объяснение потери шумовой контрастной оценки (NCE)?
Я читал о NCE (форма выборки кандидатов) из этих двух источников: Тензор потока записи Оригинальная бумага Может ли кто-нибудь помочь мне со следующим: Простое объяснение того, как работает NCE (я обнаружил, что вышеизложенное трудно разобрать и понять, поэтому что-то интуитивное, что приводит к представленной здесь математике, было бы здорово) После …

1
Почему xgboost намного быстрее, чем sklearn GradientBoostingClassifier?
Я пытаюсь обучить модели повышения градиента более чем на 50 тыс. Примеров с 100 числовыми функциями. XGBClassifierобрабатывает 500 деревьев в течение 43 секунд на моей машине, в то время как GradientBoostingClassifierобрабатывает только 10 деревьев (!) за 1 минуту и ​​2 секунды :( Я не стал пытаться вырастить 500 деревьев, так …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 

2
Sparse_categorical_crossentropy vs категорическая_кросентропия (керас, точность)
Что лучше для точности или они одинаковые? Конечно, если вы используете categoryorical_crossentropy, вы используете одну горячую кодировку, а если вы используете sparse_categorical_crossentropy, вы кодируете как обычные целые числа. Кроме того, когда один лучше другого?

2
Параметризация регрессии угла поворота
Допустим, у меня есть стрелка сверху вниз, и я хочу предсказать угол, под которым эта стрелка. Это будет от до градусов или от до . Проблема в том, что эта цель круговая, и градусов - это одно и то же, что является инвариантностью, которую я хотел бы включить в свою …

3
Функция корректировки ценового потока для несбалансированных данных
У меня проблема классификации с сильно несбалансированными данными. Я прочитал, что снова и Undersampling, а также изменения стоимости на недостаточно категоричные результаты приведут к лучшей подгонке. До того, как это было сделано, тензорный поток классифицировал бы каждый вход как группу большинства (и получал бы точность более 90%, как бы бессмысленно …
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.