При выполнении линейной классификации SVM часто бывает полезно нормализовать тренировочные данные, например, путем вычитания среднего значения и деления на стандартное отклонение, а затем масштабировать данные теста со средним и стандартным отклонением обучающих данных. Почему этот процесс резко меняет производительность классификации?