Оценка параметров гамма-распределения с использованием выборочного среднего и стандартного


19

Я пытаюсь оценить параметры гамма-распределения, которое лучше всего подходит для моей выборки данных. Я только хочу , чтобы использовать средний , зЬй (и , следовательно , дисперсию ) из выборки данных, а не фактических значений - так как они не всегда будут доступны в моем приложении.

Согласно этому документу, следующие формулы могут быть применены для оценки формы и масштаба: формулы

Я попробовал это для своих данных, однако результаты сильно отличаются по сравнению с подгонкой гамма-распределения к фактическим данным с использованием библиотеки программирования python.

Я прилагаю свои данные / код, чтобы показать проблему под рукой:

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import gamma

data = [91.81, 10.02, 27.61, 50.48, 3.34, 26.35, 21.0, 79.27, 31.04, 8.85, 109.2, 15.52, 11.03, 41.09, 10.75, 96.43, 109.52, 33.28, 7.66, 65.44, 52.43, 19.25, 10.97, 586.52, 56.91, 157.18, 434.74, 16.07, 334.43, 6.63, 108.41, 4.45, 42.03, 39.75, 300.17, 4.37, 343.19, 32.04, 42.57, 29.53, 276.75, 15.43, 117.67, 75.47, 292.43, 457.91, 5.49, 17.69, 10.31, 58.91, 76.94, 37.39, 64.46, 187.25, 30.0, 9.94, 83.05, 51.11, 17.68, 81.98, 4.41, 33.24, 20.36, 8.8, 846.0, 154.24, 311.09, 120.72, 65.13, 25.52, 50.9, 14.27, 17.74, 529.82, 35.13, 124.68, 13.21, 88.24, 12.12, 254.32, 22.09, 61.7, 88.08, 18.75, 14.34, 931.67, 19.98, 50.86, 7.71, 5.57, 8.81, 14.49, 26.74, 13.21, 8.92, 26.65, 10.09, 7.74, 21.23, 66.35, 31.81, 36.61, 92.29, 26.18, 20.55, 17.18, 35.44, 6.63, 69.0, 8.81, 19.87, 5.46, 29.81, 122.01, 57.83, 33.04, 9.91, 196.0, 34.26, 34.31, 36.55, 7.74, 6.68, 6.83, 18.83, 6.6, 50.78, 95.65, 53.91, 81.62, 57.96, 26.72, 76.25, 5.48, 4.43, 133.04, 33.37, 45.26, 30.51, 9.98, 11.08, 28.95, 71.25, 70.65, 3.34, 12.28, 111.67, 139.86, 23.34, 30.0, 26.38, 33.51, 1112.64, 25.87, 148.59, 552.79, 11.11, 47.8, 7.8, 9.98, 7.69, 85.46, 3.59, 122.71, 32.09, 82.51, 12.14, 12.57, 8.8, 49.61, 95.41, 26.99, 13.29, 4.57, 7.78, 4.4, 6.66, 12.17, 12.18, 1533.01, 22.95, 15.93, 14.82, 2.2, 12.04, 9.94, 17.64, 6.66, 18.64, 83.66, 142.99, 30.76, 67.57, 9.88, 46.44, 19.5, 22.2, 43.1, 653.67, 9.86, 7.69, 7.74, 27.19, 38.64, 12.32, 182.34, 43.13, 3.28, 14.32, 69.78, 32.2, 17.66, 18.67, 4.4, 9.05, 56.94, 33.32, 13.2, 15.07, 12.73, 3.32, 35.44, 14.35, 66.68, 51.28, 6.86, 75.49, 5.54, 21.0, 24.2, 38.1, 13.31, 7.78, 5.76, 51.86, 11.09, 20.71, 36.74, 21.97, 10.36, 32.04, 96.94, 13.93, 51.84, 6.88, 27.58, 100.56, 20.97, 828.16, 6.63, 32.15, 19.92, 253.23, 25.35, 23.35, 17.6, 43.18, 19.36, 13.7, 3.31, 22.99, 26.58, 4.43, 2.22, 55.46, 22.34, 13.24, 86.18, 181.29, 52.15, 5.52, 21.12, 34.24, 49.78, 14.37, 39.73, 78.22, 26.6, 20.19, 26.57, 105.8, 11.08, 46.47, 52.82, 13.46, 8.0, 7.74, 49.73, 4.4, 5.44, 51.7, 28.64, 8.95, 9.15, 4.46, 21.03, 29.92, 19.89, 4.38, 19.94, 7.77, 23.43, 57.07, 86.5, 12.82, 103.85, 39.63, 8.83, 42.32, 17.02, 14.29, 16.75, 24.4, 27.97, 8.83, 8.91, 24.23, 6.58, 30.97, 150.58, 122.73, 17.69, 37.11, 11.05, 298.23, 25.58, 9.91, 38.85, 17.24, 82.17, 42.11, 3.29, 38.63, 27.55, 18.22, 127.16, 57.66, 34.45, 41.26, 45.91, 9.88, 34.48, 484.33, 58.42, 30.09, 6.69, 254.49, 1313.58, 39.89, 3.31, 7.83, 10.98, 13.21, 67.78, 7.77, 117.72, 20.03, 83.23, 31.28, 38.97, 6.63, 6.63, 36.6, 22.12, 154.57, 112.65, 19.88, 674.18, 83.31, 5.54, 8.81, 11.06, 178.33, 30.47, 1180.39, 79.33, 37.74, 86.3, 16.61, 53.94, 52.78, 20.83, 11.15, 26.68, 86.04, 180.26, 99.62, 11.17, 28.74, 56.85, 15.51, 95.37, 44.09, 6.68, 12.14, 6.72, 19.81, 10.05, 34.26, 69.84, 14.35, 17.72, 8.81, 20.86, 37.69, 24.62, 72.11, 8.83, 7.69, 60.79, 20.02, 9.41, 13.24, 29.8, 43.09, 25.34, 174.34, 161.6, 119.34, 30.08, 54.15, 7.74, 249.29, 9.98, 21.87, 38.92, 98.45, 95.07, 7.74, 4.45, 81.98, 12.18, 28.66, 5.58, 59.94, 22.15, 9.98, 18.86, 6.69, 134.97, 13.29, 4.43, 8.88, 5.74, 25.16, 122.39, 3.53, 6.68, 3.4, 17.58, 62.51, 584.3, 46.63, 21.19, 22.14, 5.74, 8.19, 7.74, 7.64, 4.41, 3.32, 130.76, 3.29, 31.04, 3.26, 18.83, 168.31, 7.68, 120.19, 43.95, 747.12, 18.75, 306.24, 29.72, 5.57, 6.65, 53.2, 7.96, 25.34, 25.57, 8.85, 93.59, 92.96, 23.4, 60.0, 6.63, 12.15, 49.98, 39.75, 7.77, 5.73, 18.74, 11.58, 281.32, 13.99, 4.59, 13.35, 25.05, 9.98, 5.58, 91.43, 288.94, 15.43, 7.8, 9.92, 18.69, 6.63, 78.38, 18.86, 63.03, 26.38, 166.41, 27.78, 54.21, 173.32, 11.12, 17.85, 14.43, 31.31, 3.37, 16.63, 5.51, 77.74, 8.89, 17.71, 3.24, 9.28, 22.12, 2.2, 19.41, 12.23, 22.31, 9.36, 18.85, 51.5, 8.3, 23.0, 29.7, 29.81, 4.65, 75.77, 55.52, 144.45, 6.68, 13.26, 72.78, 56.71, 46.35, 6.63, 8.88, 6.61, 41.7, 15.09, 5.51, 18.78, 74.09, 487.0, 27.52, 18.99, 44.18, 41.76, 6.65, 23.62, 175.68, 446.38, 87.13, 165.69, 16.57, 7.88, 16.57, 80.17, 135.75, 3.29, 134.16, 25.58, 45.13, 114.23, 471.15, 97.75, 12.2, 32.01, 62.21, 22.36, 193.55, 210.65, 42.39, 27.57, 106.15, 44.76, 16.6, 134.76, 18.81, 14.76, 7.97, 160.59, 39.21, 60.36, 62.45, 72.18, 91.15, 23.71, 105.04, 70.87, 25.57, 122.09, 60.09, 38.8, 133.87, 4.41, 13.28, 45.63, 45.41, 67.81, 26.68, 97.33, 723.5, 5.51, 164.05, 165.32, 4.45, 57.67, 85.82, 11.56, 12.26, 17.97, 31.04, 76.72, 15.01, 35.88, 32.37, 23.63, 85.57, 9.34, 4.45, 90.25, 73.71, 45.99, 14.24, 176.85, 65.21, 9.92, 15.02, 12.9, 21.4, 59.94, 64.62, 37.53, 147.89, 36.52, 97.67, 16.65, 22.1, 23.38, 76.85, 16.58, 7.72, 17.75, 91.25, 9.91, 18.46, 4.45, 3.29, 73.18, 19.5, 5.58, 18.85, 28.64, 7.8, 43.74, 4.43, 7.99, 132.4, 41.48, 14.45, 8.78, 8.14, 9.95, 2.46, 16.61, 32.71, 17.74, 4.46, 68.25, 34.55, 9.92, 181.31, 37.63, 125.22, 25.37, 24.45, 220.92, 11.09, 35.46, 588.56, 58.21, 22.39, 78.55, 135.13, 280.65, 273.41, 381.07, 60.56, 68.63, 40.17, 27.68, 23.68, 23.15, 28.8, 20.94, 21.92, 159.06, 9.94, 127.52, 32.4, 15.93, 99.09, 48.31, 104.66, 257.4, 117.08, 180.32, 66.55, 95.99, 17.74, 30.14, 270.54, 39.8, 54.77, 16.04, 76.99, 5.43, 8.78, 76.96, 10.39, 18.47, 290.11, 48.35, 289.06, 10.44, 57.75, 47.83, 101.62, 96.3, 71.62, 256.97, 149.45, 22.17, 23.15, 89.25, 36.46, 90.03, 69.14, 28.27, 28.72, 17.44, 43.38, 56.72, 84.96, 25.4, 55.06, 47.68, 92.11, 6.65, 30.94, 15.38, 27.44, 516.55, 5.83, 19.45, 41.53, 110.69, 6.82, 54.09, 13.31, 89.8, 25.57, 110.89, 3.32, 93.76, 33.81, 80.87, 30.9, 58.53, 185.22, 4.38, 58.75, 189.53, 7.19, 7.8, 48.97, 28.8, 48.52, 45.96, 309.44, 29.16, 2.22, 255.91, 78.7, 102.67, 33.32, 43.2, 19.5, 91.59, 139.89, 5.51, 213.96, 10.02, 10.03, 39.87, 8.95, 27.74, 7.78, 65.93, 45.41, 263.21, 33.06, 5.54, 59.77, 2.2, 9.95, 14.38, 44.76, 96.45, 15.91, 133.07, 38.03, 36.43, 7.83, 105.41, 20.5, 25.35, 20.55, 119.59, 24.31, 28.81, 101.0, 67.0, 143.85, 20.55, 83.45, 60.62, 25.19, 6.65, 1745.95, 41.62, 44.96, 65.42, 9.92, 24.23, 73.56, 34.35, 75.72, 18.77, 88.59, 312.55, 56.43, 106.61, 11.44, 22.04, 5.73, 197.92, 25.32, 144.83, 145.36, 4.43, 18.33, 48.72, 33.42, 8.83, 18.85, 32.25, 88.56, 14.95, 147.39, 9.25, 35.24, 141.51, 14.41, 5.49, 42.28, 75.69, 16.96, 6.71, 17.33, 710.34, 68.92, 28.39, 24.98, 33.03, 31.06, 46.24, 36.77, 43.74, 11.48, 22.14, 13.21, 15.8, 21.9, 5.51, 20.66, 22.04, 127.0, 21.03, 36.75, 61.45, 42.12, 238.3, 57.43, 28.61, 31.31, 15.43, 8.88, 54.26, 34.01, 5.79, 8.02, 25.68, 19.67, 29.19, 4.38, 15.05, 5.57, 32.31, 81.68, 29.92, 397.98, 119.2, 5.52, 25.54, 12.78, 17.78, 100.97, 253.58, 8.92, 22.04, 22.03, 86.57, 97.27, 106.29, 33.31, 13.34, 35.57, 40.75, 6.57, 23.32, 6.63, 30.09, 62.39, 35.62, 25.23, 5.49, 77.67, 4.41, 8.77, 12.09, 32.0, 7.75, 25.44, 27.57, 25.51, 81.59, 8.83, 64.15, 48.92, 52.25, 2.2, 13.29, 15.52, 320.64, 22.26, 21.03, 79.27, 6.61, 59.38, 40.19, 43.07, 2.26, 20.97, 8.8, 205.43, 51.82, 8.78, 90.72, 6.63, 14.46, 85.62, 72.53, 29.24, 68.81, 67.6, 1.15, 13.15, 17.71, 20.06, 77.42, 167.72, 5.54, 34.45, 5.51, 54.04, 7.8, 79.91, 4.62, 66.39, 164.13, 78.1, 49.72, 19.92, 28.92, 709.25, 18.19, 875.38, 60.92, 5.55, 71.14, 301.2, 27.74, 34.26, 108.78, 88.28, 75.83, 7.82, 8.78, 44.68, 20.98, 41.9, 8.88, 124.18, 198.8, 180.0, 71.61, 119.27, 59.33, 3.28, 43.88, 14.46, 64.34, 158.59, 41.98, 32.28, 14.43, 48.49, 2.36, 14.38, 25.52, 7.83, 2.2, 292.18, 8.97, 36.18, 7.8, 8.89, 43.26, 25.35, 12.29, 6.88, 34.48, 11.09, 16.57, 35.99, 13.45, 6.6, 162.65, 13.23, 26.91, 55.62, 61.4, 48.47, 89.62, 7.77, 6.65, 11.56, 23.28, 6.66, 7.74, 4.62, 5.8, 24.56, 10.16, 8.91, 14.45, 25.37, 6.61, 75.29, 11.03, 36.75, 38.61, 36.52, 17.75, 61.87, 31.92, 120.9, 144.82, 70.98, 19.98, 80.09, 30.17, 35.48, 2.4, 42.15, 24.29, 111.26, 71.9, 158.23, 49.75, 7.75, 13.28, 10.97, 5.51, 34.37, 56.61, 138.83, 231.4, 20.17, 29.89, 20.27, 7.69, 77.35, 12.26, 1144.41, 9.95, 7.72, 196.64, 499.4, 114.38, 24.43, 94.88, 75.15, 4.48, 8.89, 196.05, 95.15, 99.28, 42.36, 234.32, 4.59, 80.97, 237.69, 89.34, 4.51, 6.68, 148.42, 108.58, 5.48, 132.38, 7.94, 204.74, 11.08, 74.24, 146.22, 79.5, 17.68, 10.51, 550.77, 45.35, 23.28, 47.57, 40.56, 114.76, 29.81, 15.51, 11.0, 26.61, 6.74, 142.82, 12.17]

Некоторая информация о данных:

Среднее значение: 68,71313036020582, отклонение: 19112,931263699986, стандартное отклонение: 138.24952536518882, количество элементов в данных обучения: 1166

Гистограмма данных:

введите описание изображения здесь

Использование библиотеки python для подгонки:

x = np.linspace(0,300,1000)
# Gamma
shape, loc, scale = gamma.fit(data, floc=0)
print(shape, loc, scale)
y = gamma.pdf(x, shape, loc, scale)
plt.title('Fitted Gamma')
plt.plot(x, y)
plt.show()

встроенная гамма

Параметры: 0,7369587045435088 0 93,2387797804

Оценил это сам:

def calculateGammaParams(data):
    mean = np.mean(data)
    std = np.std(data)
    shape = (mean/std)**2
    scale = (std**2)/mean
    return (shape, 0, scale)

eshape, eloc, escale = calculateGammaParams(data)
print(eshape, eloc, escale)
ey = gamma.pdf(x, eshape, eloc, escale)
plt.title('Estimated Gamma')
plt.plot(x, ey)
plt.show()

по оценкам

Параметры: 0.247031406055 0 278.155443705

Можно ясно увидеть огромную разницу.


Пожалуйста, покажите, что вы рассчитали, что это «очень далеко от 1» - это не будет связано с тем, являются ли оценки на основе моментов сами по себе хорошими или нет. Если возможно, укажите ваши данные (например, если размер выборки достаточно мал, чтобы включить их в ваш пост), и оценки параметров рассчитываются в обоих направлениях.
Glen_b

Я обновил свой вопрос данными, образцом кода и графиками. Я надеюсь, что это помогает прояснить мой вопрос.
DJanssens

1
Вы, кажется, не уверены, что хотели бы соответствовать гамма-дистрибутиву. Это поднимает более фундаментальный вопрос: почему вы проходите это упражнение в первую очередь? Чего вы надеетесь достичь, приспособив любое распределение к данным?
whuber

@whuber Я подгоняю данные для того, чтобы иметь возможность делать некоторые предположения о будущих данных - более точно, чтобы определить поведение выбросов. Я слышал, что гамма / логнорм хорошо подойдет для этого типа данных.
DJanssens

Ответы:


15

И MLE, и основанные на моментах оценки согласуются друг с другом, и поэтому можно ожидать, что в достаточно больших выборках из гамма-распределения они имеют тенденцию быть довольно похожими. Однако они не обязательно будут одинаковыми, если распределение не близко к гамме.

Если посмотреть на распределение журнала данных, он примерно симметричен - или даже несколько искажен. Это указывает на то, что гамма-модель не подходит (для гаммы журнал следует оставить наклонным).

Может случиться так, что модель обратной гаммы может работать лучше для этих данных. Но такая же легкая перекос вправо в журналах будет видна с любым количеством других дистрибутивов - мы действительно не можем сказать наверняка, исходя из направления асимметрии в масштабе журнала.

Это может быть частью объяснения того, почему два набора оценок различаются - метод моментов и MLE не будут соответствовать друг другу.

Вы можете оценить параметры обратной гаммы, инвертировав данные, подгоняя гамму и сохранив эти оценки параметров как есть. Вы также можете оценить логнормальные параметры из среднего значения и стандартного отклонения (несколько постов на сайте показывают, как или увидеть википедию ), но чем тяжелее хвост распределения, тем хуже будет метод оценки моментов.


Кажется (из комментариев ниже моего ответа), что реальная проблема заключается в том, что оценки параметров должны обновляться «в режиме онлайн» - чтобы получать только сводную информацию, а не все данные - и обновлять оценки параметров из сводной информации. Причина использования выборочного среднего значения и дисперсии в вопросе заключается в том, что они могут быть быстро обновлены.

Тем не менее, они не единственные вещи, которые можно быстро обновить!

fX(xθ)=exp(η(θ)T(x)A(θ)+B(x))T(x)

θT

Для всех обсуждаемых распределений (гамма, логнормальная, обратная гамма) достаточная статистика легко обновляется. В целях стабильности я предлагаю обновить следующие величины (которых между ними достаточно для всех трех распределений):

  • среднее значение данных

  • среднее из журналов данных

  • Дисперсия журналов данных

sn2n

1nxi2x¯2


0


Спасибо за объяснение, что будет лучше, если я могу спросить?
DJanssens

Я сделал предложение в редактировании ... обратная гамма может подойти лучше - или даже любое количество других возможностей, согласующихся с этим наблюдением о бревнах.
Glen_b

Я установил обратную гамму, используя библиотеку python, и результаты выглядят очень многообещающе. Однако я не могу понять, как аналитически найти форму и масштаб для invgamma. Я думал, что он будет использовать ту же calculateGammaParams()функцию, которую я написал, и просто инвертировать масштаб и форму, выполнив 1 / масштаб и 1 / форму. Однако это кажется неправильным. 0.918884418421 0 14.82795204710.247031406055 0 278.155443705
Подогнанные

Логнормальное выглядит не так уж плохо.
Ник Кокс

@NickCox Я на самом деле попробовал логнормальный, прежде чем попробовать Gamma. На первый взгляд казалось, что гамма лучше подходит, однако мне нужно иметь возможность оценить параметры, используя среднее значение / дисперсию / стандартное значение выборки, может ли это быть легко сделано для логнормального значения?
DJanssens

9

Полученные таким образом оценки являются методом оценки моментов. В частности, мы знаем, чтоE(X)=αθVar[X]=αθ2αθαθα=E[X]2/Var[X]θ=Var[X]/E[X]α^=x¯2/s2θ^=s2/x¯

Это не MLEs (опять же, смотрите википедию ). Я не знаю, какую библиотеку вы использовали для оценки параметров, но обычно такие библиотеки дают MLE. И они могут отличаться от метода оценки моментов.

αθ

Обновить:

После публикации данных я использовал R для получения MLE и метода оценки моментов. Это дает:

> library(MASS)
> fitdistr(y, dgamma, start=list(shape=1, scale=1))
      shape         scale   
   0.73684030   93.26893829 
 ( 0.02613277) ( 4.59104121)

> mean(y)^2 / var(y)
[1] 0.2468195
> var(y) / mean(y)
[1] 278.3942

Итак, по сути то же самое, что было получено с Python. Таким образом, оценки просто отличаются, используя оценку максимального правдоподобия по сравнению с методом моментов.


1
Я обновил свой вопрос данными, графиками и образцом кода. Я полагаю, что использовал те формулы, которые вы упомянули, для расчета формы и масштаба. Я не уверен, что я делаю неправильно.
DJanssens

1
Спасибо за информацию, Вольфганг, это очень ценится.
DJanssens
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.