Примечание: в этом ответе я имею в виду минимизацию потерь при обучении и не обсуждаю критерии остановки, такие как потеря при валидации. Выбор критериев остановки не влияет на процесс / концепции, описанные ниже.
Процесс обучения нейронной сети состоит в том, чтобы найти минимальное значение функции потерь , где представляет матрицу (или несколько матриц) весов между нейронами, а представляет обучающий набор данных. Я использую нижний индекс для чтобы указать, что наша минимизация происходит только по весам (то есть мы ищем такой, что минимизируется), пока фиксирован.WXX ℒ WW ℒ XLX(W)WXXLWWLX
Теперь, если мы предположим, что у нас есть элементов в (то есть, есть весов в сети), - поверхность в -мерном пространстве. Чтобы дать визуальный аналог, представьте, что у нас есть только два веса нейронов ( ). Тогда имеет простую геометрическую интерпретацию: это поверхность в трехмерном пространстве. Это вытекает из того факта, что для любых заданных матриц весов функция потерь может быть оценена по и это значение становится высотой поверхности.W P ℒ P + 1 P = 2 ℒ W XPWPLP+1P=2LWX
Но есть проблема невыпуклости; Поверхность, которую я описал, будет иметь множество локальных минимумов, и поэтому алгоритмы градиентного спуска могут застрять в этих минимумах, в то время как более глубокое / меньшее / лучшее решение может находиться поблизости. Это может произойти, если остается неизменным на протяжении всех обучающих итераций, потому что поверхность фиксирована для данного ; все его характеристики статичны, включая различные минимумы.XXX
Решением этой проблемы является мини-пакетное обучение в сочетании с перетасовкой. Перетасовывая строки и обучая только их подмножеству во время данной итерации, изменяется с каждой итерацией, и на самом деле вполне возможно, что никакие две итерации по всей последовательности обучающих итераций и эпох не будут выполняться для одного и того же , В результате решатель может легко «отскочить» от локального минимума. Представьте, что решатель застрял в локальном минимуме на итерации с обучающей мини-партией . Этот локальный минимум соответствует оцененному при определенном значении весов; мы назовем этоX i X i ℒ ℒ X i ( W i ) X i + 1 ℒ X i + 1 ( W i ) ℒ X i ( W i ) ℒ X i + 1 ℒ X i ℒ X W WXXiXiLLXi(Wi), На следующей итерации форма нашей поверхности потерь фактически изменится, потому что мы используем , то есть может принимать значение, от и вполне возможно, что он не соответствует локальному минимуму! Теперь мы можем вычислить обновление градиента и продолжить обучение. Для ясности: форма будет - в общем случае - отличаться от формы . Обратите внимание, что здесь я имею в виду функцию потерь на тренировочном наборе ; это полная поверхность, определенная по всем возможным значениямXi+1LXi+1(Wi)LXi(Wi)LXi+1LXiLXW, А не оценки этой потери (который является только скаляром) для определенного значения . Также обратите внимание, что если мини-пакеты используются без перестановки, все еще есть степень «диверсификации» поверхностей потерь, но будет определенное (и относительно небольшое) число уникальных поверхностей ошибок, видимых решающим устройством (в частности, он будет видеть один и тот же точный набор мини-партий - и, следовательно, поверхностей потерь - в каждую эпоху).W
Одной вещи, которую я сознательно избегал, было обсуждение размеров мини-пакетов, потому что существует миллион мнений по этому вопросу, и это имеет значительные практические последствия (большая параллелизация может быть достигнута при больших партиях). Однако я считаю, что стоит упомянуть следующее. Поскольку оценивается путем вычисления значения для каждой строки (и суммирования или взятия среднего значения, т. Коммутативного оператора) для заданного набора весовых матриц , расположение строк имеет никакого эффекта при использовании полной градиентный спуск (то есть, когда каждый пакет представляет собой полный , а итерации и эпохи - это одно и то же). X W X XLXWX X