Проблема, с которой я имею дело, заключается в прогнозировании значений временных рядов. Я смотрю на один временной ряд за раз и на основе, например, 15% входных данных, я хотел бы предсказать его будущие значения. До сих пор я сталкивался с двумя моделями:
Я попробовал оба и прочитал некоторые статьи на них. Теперь я пытаюсь понять, как их сравнивать. Что я нашел до сих пор:
- LSTM работает лучше, если мы имеем дело с огромным количеством данных и имеется достаточно данных для обучения, тогда как ARIMA лучше для небольших наборов данных (это правильно?)
- ARIMA требует ряд параметров,
(p,q,d)
которые должны быть рассчитаны на основе данных, в то время как LSTM не требует установки таких параметров. Однако есть некоторые гиперпараметры, которые нам нужно настроить для LSTM.
Кроме вышеупомянутых свойств, я не мог найти никаких других моментов или фактов, которые могли бы помочь мне выбрать лучшую модель. Я был бы очень признателен, если бы кто-нибудь мог помочь мне найти статьи, статьи или другие материалы (пока что не повезло, только некоторые общие мнения здесь и там, и ничего, основанное на экспериментах).
Я должен отметить, что изначально я имею дело с потоковыми данными, однако сейчас я использую наборы данных NAB, которые включают в себя 50 наборов данных с максимальным размером 20 тыс. Точек данных.