Думайте о как о наборе билетов . Вы можете написать вещи на билете. Обычно билет начинается с имени какого-то реального человека или объекта, который он «представляет» или «моделирует». На каждом билете много свободного места для написания других вещей.S
Вы можете сделать столько копий каждого билета, сколько захотите. Вероятностная модель для этого реального мирового населения или процесса заключается в проведении одного или нескольких копий каждого билета, смешивая их, и положить их в коробку. Если вы - аналитик - можете установить, что процесс получения одного билета случайным образом из этого блока имитирует все важное поведение того, что вы изучаете, тогда вы можете многое узнать о мире, подумав об этом окне. Поскольку некоторые билеты могут быть более многочисленными в коробке, чем другие, у них могут быть разные шансы на получение. Теория вероятностей изучает эти шансы.п
Когда числа написаны на билетах (последовательным образом), они приводят к (вероятности) распределения. Распределение вероятностей лишь характеризует долю билетов в поле число которых лежит в пределах любого заданного интервала.
Поскольку мы обычно не знаем точно, как ведет себя мир, мы должны представить разные коробки, в которых билеты появляются с разными относительными частотами. Множество этих ящиков . Мы считаем , что мир , как адекватно описывается поведение одной из коробок в P . Ваша цель состоит в том, чтобы сделать разумные предположения относительно того, какой это ящик, основываясь на том, что вы видите на билетах, которые вы вынули из него.пп
В качестве примера (который является практичным и реалистичным, а не учебник игрушка), предположим , что вы изучаете скорость химической реакции , как она изменяется в зависимости от температуры. Предположим, что теория химии предсказывает, что в диапазоне температур от 0 до 100 градусов скорость пропорциональна температуре.Y0100
Вы планируете изучить эту реакцию как при и при 100 градусах, делая несколько наблюдений при каждой температуре. Поэтому вы составляете очень, очень большое количество коробок. Вы собираетесь заполнить каждую коробку с билетами. На каждом написана константа скорости. Все билеты в любой данной ячейке имеют одинаковую константу ставки. Различные блоки используют разные константы скорости. 0100
Используя константу курса, записанную на любом билете, вы также записываете скорость в и скорость в 100 градусов: назовите эти y 0 и y 100 . Но этого недостаточно для хорошей модели. Химики также знают, что ни одно вещество не является чистым, никакое количество точно не измеряется, и встречаются другие формы наблюдательной изменчивости. Чтобы смоделировать эти «ошибки», вы делаете очень, очень много копий ваших билетов. На каждой копии вы меняете значения y 0 и y 100 . На большинстве из них вы меняете их лишь немного. На очень немногих вы можете их сильно изменить. Вы записываете столько измененных значений, сколько планируете наблюдать при каждой температуре. Эти0100Y0Y100Y0Y100Наблюдения представляют возможные наблюдаемые результаты вашего эксперимента. В поле вставьте каждый такой набор этих билетов: это модель вероятности того, что вы могли бы наблюдать для данной константы скорости.
То , что вы действительно наблюдаете моделируются рисунок билета из этого ящика и чтение только замечаний , написанных там. Вы не видите базовые (истинные) значения или y 100 . Вы не можете прочитать (истинную) константу скорости. Это не предусмотрено вашим экспериментом.Y0Y100
Каждая статистическая модель должна делать некоторые предположения о билетах в этих (гипотетических) клетках. Например, мы надеемся, что когда вы изменили значения и y 100 , вы сделали это без последовательного увеличения или последовательного уменьшения одного из них (в целом, в рамке): это было бы формой систематического смещения.Y0Y100
Поскольку наблюдения, записанные на каждом билете, являются числами, они приводят к распределению вероятностей. Предположения, сделанные в отношении блоков, обычно формулируются в терминах свойств этих распределений, таких как то, должны ли они усредняться до нуля, быть симметричными, иметь форму "колоколообразной формы", некоррелированы или что-то еще.
Это действительно все, что нужно сделать. Во многом благодаря тому, что примитивная шкала из двенадцати тонов породила всю западную классическую музыку, коллекция коробок, содержащих билеты, представляет собой простую концепцию, которую можно использовать чрезвычайно богатым и сложным способом. Он может моделировать практически все, начиная от броска монеты до библиотеки видео, баз данных взаимодействий веб-сайтов, квантово-механических ансамблей и всего, что можно наблюдать и записывать.