Алгоритм Метрополис Гастингс


11

Мне нужно изучить методы Марковской цепочки Монте-Карло, чтобы быть более конкретным, мне нужно изучить алгоритм Метрополиса Гастингса и все о нем, как критерии сходимости.

Кто может назначить мне книгу, или газету, или веб-сайт, который объясняет этот аргумент простыми терминами, но без тривиальности?

Ответы:


12

Отличная вступительная статья - это Чиб и Гринберг

Понимание Алгоритма Метрополиса-Хастинга

Мастерское и краткое обсуждение теории принадлежит Тирни.

Марковские цепочки для исследования задних распределений


Большое спасибо. Моя главная цель - узнать о критериях конвергенции, но я знаю только основы Metropolis Hastings, поэтому все это полезно.
Нептун

1
Начните изучать сближение с Тирни. Исчерпывающее лечение встречается в Meyn и Tweedie Вероятность.ca/
Дзен

А как насчет имитации отжига с Метрополис Гастингс? Я читал это, но как насчет интеграции с Метрополис Гастингс?
Нептун

1
В книге Роберта и Казеллы обсуждается моделируемый отжиг. amazon.com/Monte-Statistical-Methods-Springer-Statistics/dp/…
Zen

Ссылка "Понимание ..." не работает.
EngrStudent

6

Для книги, которая не "тяжелая по математике", я бы порекомендовал:

Перейти к главе 7.

Код R приведен в книге, так что вы сможете поиграть с примерами и увидеть, на практике, последствия изменения количества выгорания и так далее.


3

Есть очень хорошая статья Кристиана Роберта, подробно описывающая алгоритм MH

Роберт, CP (2015). Алгоритм Метрополис-Гастингс. Препринт arXiv arXiv: 1504.01896.

и отличная книга о методах Монте-Карло в целом от того же автора

Robert, C. & Casella, G. (2013). Статистические методы Монте-Карло. Springer Science & Business Media.


0

Что касается критериев конвергенции, большая часть работы над конвергенцией - это чувство расстояния от общей вариации (TV). Главным образом потому, что для телевизионной дистанции разработано много теории вероятностей. Есть хорошая обзорная статья, а также с теоретической стороны есть статья Робертса и Розенталя, которая дает несколько теорем о критериях сходимости. С более практической стороны есть несколько работ, написанных Джимом Хобертом , в которых приводятся примеры применения одной из теорем Робертса и Розенталя к MCMC. В общем, сложная часть применения этой теоремы, похоже, заключается в хорошей дрейфовой функции Ляпунова.


-1

Вот грубая аналогия, которую я использовал, чтобы приблизительно дать представление о MHA: В следующий раз, когда вы будете в супермаркете:

  1. Возьмите предмет наугад и положите в корзину.

  2. Возьмите другой предмет правой рукой.

  3. Если цена в вашей руке ниже, чем в последний раз, вы положили его в корзину.

  4. В противном случае поместите товар в корзину с вероятностью (цена последнего) ÷ (цена в руке), иначе решите его.

  5. Повторите шаги с 2 по 4, пока в корзине не появится двадцать девять дополнительных товаров.

  6. Удалите первые 15 предметов из вашей корзины.

  7. Оформить заказ и пожелать кассиру приятного дня.

  8. Катите тележку к своей машине.

  9. Ехать домой.

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.