TL: DR; Ваш код уже правильный и "чистый".
Я вижу, как много людей колеблются вокруг ответа, но всем не хватает леса сквозь деревья. Давайте сделаем полную информатику и математический анализ, чтобы полностью понять этот вопрос.
Сначала отметим, что у нас есть 3 переменные, каждая из которых имеет 3 состояния: <, = или>. Общее количество перестановок составляет 3 ^ 3 = 27 состояний, которым я назначу уникальный номер, обозначаемый P #, для каждого состояния. Этот номер P # является факториальной системой счисления .
Перечисляя все перестановки, которые мы имеем:
a ? b | a ? c | b ? c |P#| State
------+-------+-------+--+------------
a < b | a < c | b < c | 0| C
a = b | a < c | b < c | 1| C
a > b | a < c | b < c | 2| C
a < b | a = c | b < c | 3| impossible a<b b<a
a = b | a = c | b < c | 4| impossible a<a
a > b | a = c | b < c | 5| A=C > B
a < b | a > c | b < c | 6| impossible a<c a>c
a = b | a > c | b < c | 7| impossible a<c a>c
a > b | a > c | b < c | 8| A
a < b | a < c | b = c | 9| B=C > A
a = b | a < c | b = c |10| impossible a<a
a > b | a < c | b = c |11| impossible a<c a>c
a < b | a = c | b = c |12| impossible a<a
a = b | a = c | b = c |13| A=B=C
a > b | a = c | b = c |14| impossible a>a
a < b | a > c | b = c |15| impossible a<c a>c
a = b | a > c | b = c |16| impossible a>a
a > b | a > c | b = c |17| A
a < b | a < c | b > c |18| B
a = b | a < c | b > c |19| impossible b<c b>c
a > b | a < c | b > c |20| impossible a<c a>c
a < b | a = c | b > c |21| B
a = b | a = c | b > c |22| impossible a>a
a > b | a = c | b > c |23| impossible c>b b>c
a < b | a > c | b > c |24| B
a = b | a > c | b > c |25| A=B > C
a > b | a > c | b > c |26| A
При осмотре мы видим, что имеем:
- 3 состояния, где A - максимум,
- 3 состояния, где B - максимум,
- 3 состояния, где C - максимум, и
- 4 состояния, где либо A = B, либо B = C.
Давайте напишем программу (см. Сноску) для перечисления всех этих перестановок со значениями для A, B и C. Стабильная сортировка по P #:
a ?? b | a ?? c | b ?? c |P#| State
1 < 2 | 1 < 3 | 2 < 3 | 0| C
1 == 1 | 1 < 2 | 1 < 2 | 1| C
1 == 1 | 1 < 3 | 1 < 3 | 1| C
2 == 2 | 2 < 3 | 2 < 3 | 1| C
2 > 1 | 2 < 3 | 1 < 3 | 2| C
2 > 1 | 2 == 2 | 1 < 2 | 5| ??
3 > 1 | 3 == 3 | 1 < 3 | 5| ??
3 > 2 | 3 == 3 | 2 < 3 | 5| ??
3 > 1 | 3 > 2 | 1 < 2 | 8| A
1 < 2 | 1 < 2 | 2 == 2 | 9| ??
1 < 3 | 1 < 3 | 3 == 3 | 9| ??
2 < 3 | 2 < 3 | 3 == 3 | 9| ??
1 == 1 | 1 == 1 | 1 == 1 |13| ??
2 == 2 | 2 == 2 | 2 == 2 |13| ??
3 == 3 | 3 == 3 | 3 == 3 |13| ??
2 > 1 | 2 > 1 | 1 == 1 |17| A
3 > 1 | 3 > 1 | 1 == 1 |17| A
3 > 2 | 3 > 2 | 2 == 2 |17| A
1 < 3 | 1 < 2 | 3 > 2 |18| B
1 < 2 | 1 == 1 | 2 > 1 |21| B
1 < 3 | 1 == 1 | 3 > 1 |21| B
2 < 3 | 2 == 2 | 3 > 2 |21| B
2 < 3 | 2 > 1 | 3 > 1 |24| B
2 == 2 | 2 > 1 | 2 > 1 |25| ??
3 == 3 | 3 > 1 | 3 > 1 |25| ??
3 == 3 | 3 > 2 | 3 > 2 |25| ??
3 > 2 | 3 > 1 | 2 > 1 |26| A
Если вам интересно, откуда я знаю, какие состояния P # невозможны, теперь вы знаете. :-)
Минимальное количество сравнений для определения порядка:
Log2 (27) = Log (27) / Log (2) = ~ 4,75 = 5 сравнений
т.е. coredump дал правильное 5 минимальное количество сравнений. Я бы отформатировал его код как:
status_t index_of_max_3(a,b,c)
{
if (a > b) {
if (a == c) return DONT_KNOW; // max a or c
if (a > c) return MOSTLY_A ;
else return MOSTLY_C ;
} else {
if (a == b) return DONT_KNOW; // max a or b
if (b > c) return MOSTLY_B ;
else return MOSTLY_C ;
}
}
Для вашей проблемы мы не заботимся о проверке на равенство, поэтому мы можем опустить 2 теста.
Неважно, насколько чист / плох код, если он получает неправильный ответ, так что это хороший признак того, что вы правильно обрабатываете все случаи!
Далее, что касается простоты, люди продолжают пытаться «улучшить» ответ, где они думают, что улучшение означает «оптимизацию» числа сравнений, но это не совсем то, что вы просите. Вы запутали всех, когда спросили: «Я чувствую, что может быть лучше», но не определили, что означает «лучше». Меньше сравнений? Меньше кода? Оптимальные сравнения?
Теперь, так как вы спрашиваете о читабельности кода (учитывая правильность), я бы сделал одно изменение в вашем коде для удобства чтения: выровняйте первый тест с остальными.
if (a > b && a > c)
status = MOSTLY_A;
else if (b > a && b > c)
status = MOSTLY_B;
else if (c > a && c > b)
status = MOSTLY_C;
else
status = DONT_KNOW; // a=b or b=c, we don't care
Лично я написал бы это следующим образом, но это может быть слишком необычным для ваших стандартов кодирования:
if (a > b && a > c) status = MOSTLY_A ;
else if (b > a && b > c) status = MOSTLY_B ;
else if (c > a && c > b) status = MOSTLY_C ;
else /* a==b || b ==c*/status = DONT_KNOW; // a=b or b=c, we don't care
Сноска. Вот код C ++ для генерации перестановок:
#include <stdio.h>
char txt[] = "< == > ";
enum cmp { LESS, EQUAL, GREATER };
int val[3] = { 1, 2, 3 };
enum state { DONT_KNOW, MOSTLY_A, MOSTLY_B, MOSTLY_C };
char descr[]= "??A B C ";
cmp Compare( int x, int y ) {
if( x < y ) return LESS;
if( x > y ) return GREATER;
/* x==y */ return EQUAL;
}
int main() {
int i, j, k;
int a, b, c;
printf( "a ?? b | a ?? c | b ?? c |P#| State\n" );
for( i = 0; i < 3; i++ ) {
a = val[ i ];
for( j = 0; j < 3; j++ ) {
b = val[ j ];
for( k = 0; k < 3; k++ ) {
c = val[ k ];
int cmpAB = Compare( a, b );
int cmpAC = Compare( a, c );
int cmpBC = Compare( b, c );
int n = (cmpBC * 9) + (cmpAC * 3) + cmpAB; // Reconstruct unique P#
printf( "%d %c%c %d | %d %c%c %d | %d %c%c %d |%2d| "
, a, txt[cmpAB*2+0], txt[cmpAB*2+1], b
, a, txt[cmpAC*2+0], txt[cmpAC*2+1], c
, b, txt[cmpBC*2+0], txt[cmpBC*2+1], c
, n
);
int status;
if (a > b && a > c) status = MOSTLY_A;
else if (b > a && b > c) status = MOSTLY_B;
else if (c > a && c > b) status = MOSTLY_C;
else /* a ==b || b== c*/status = DONT_KNOW; // a=b, or b=c
printf( "%c%c\n", descr[status*2+0], descr[status*2+1] );
}
}
}
return 0;
}
Изменения: на основе обратной связи переместил TL: DR наверх, удалил несортированную таблицу, уточнил 27, очистил код, описал невозможные состояния.