Недавно я написал код, который пытался вычислить без использования библиотечных функций. Вчера я просматривал старый код и пытался сделать его как можно быстрее (и исправить). Вот моя попытка:
const double ee = exp(1);
double series_ln_taylor(double n){ /* n = e^a * b, where a is an non-negative integer */
double lgVal = 0, term, now;
int i, flag = 1;
if ( n <= 0 ) return 1e-300;
if ( n * ee < 1 )
n = 1.0 / n, flag = -1; /* for extremely small n, use e^-x = 1/n */
for ( term = 1; term < n ; term *= ee, lgVal++ );
n /= term;
/* log(1 - x) = -x - x**2/2 - x**3/3... */
n = 1 - n;
now = term = n;
for ( i = 1 ; ; ){
lgVal -= now;
term *= n;
now = term / ++i;
if ( now < 1e-17 ) break;
}
if ( flag == -1 ) lgVal = -lgVal;
return lgVal;
}
Здесь я пытаюсь найти так , что е чуть больше п, а затем добавить значение логарифм п
Недавно я заинтересовался численным анализом, и поэтому я не могу не задать вопрос, насколько быстрее этот сегмент кода может быть выполнен на практике, будучи достаточно правильным? Нужно ли мне переключаться на некоторые другие методы, например, используя продолжение дроби, как это ?
ОБНОВЛЕНИЕ 1 : Используя ряд гиперболических арктанов, упомянутый в Википедии , вычисление, кажется, почти в 2,2 раза медленнее, чем функция журнала стандартной библиотеки С. Хотя я не проверил детально производительность, и для больших чисел моя текущая реализация кажется ДЕЙСТВИТЕЛЬНО медленной. Я хочу проверить мою реализацию на наличие ошибок и среднее время для широкого диапазона чисел, если я могу управлять. Вот мое второе усилие.
double series_ln_arctanh(double n){ /* n = e^a * b, where a is an non-negative integer */
double lgVal = 0, term, now, sm;
int i, flag = 1;
if ( n <= 0 ) return 1e-300;
if ( n * ee < 1 ) n = 1.0 / n, flag = -1; /* for extremely small n, use e^-x = 1/n */
for ( term = 1; term < n ; term *= ee, lgVal++ );
n /= term;
/* log(x) = 2 arctanh((x-1)/(x+1)) */
n = (1 - n)/(n + 1);
now = term = n;
n *= n;
sm = 0;
for ( i = 3 ; ; i += 2 ){
sm += now;
term *= n;
now = term / i;
if ( now < 1e-17 ) break;
}
lgVal -= 2*sm;
if ( flag == -1 ) lgVal = -lgVal;
return lgVal;
}
Любое предложение или критика приветствуется.
double series_ln_better(double n){ /* n = e^a * b, where a is an non-negative integer */
double lgVal = 0, term, now, sm;
int i, flag = 1;
if ( n == 0 ) return -1./0.; /* -inf */
if ( n < 0 ) return 0./0.; /* NaN*/
if ( n < 1 ) n = 1.0 / n, flag = -1; /* for extremely small n, use e^-x = 1/n */
/* the cutoff iteration is 650, as over e**650, term multiplication would
overflow. For larger numbers, the loop dominates the arctanh approximation
loop (with having 13-15 iterations on average for tested numbers so far */
for ( term = 1; term < n && lgVal < 650 ; term *= ee, lgVal++ );
if ( lgVal == 650 ){
n /= term;
for ( term = 1 ; term < n ; term *= ee, lgVal++ );
}
n /= term;
/* log(x) = 2 arctanh((x-1)/(x+1)) */
n = (1 - n)/(n + 1);
now = term = n;
n *= n;
sm = 0;
/* limiting the iteration for worst case scenario, maximum 24 iteration */
for ( i = 3 ; i < 50 ; i += 2 ){
sm += now;
term *= n;
now = term / i;
if ( now < 1e-17 ) break;
}
lgVal -= 2*sm;
if ( flag == -1 ) lgVal = -lgVal;
return lgVal;
}