Мотивация
Многие наборы данных достаточно велики, поэтому нам нужно заботиться о скорости / эффективности. Поэтому я предлагаю это решение в том же духе. Это тоже бывает лаконично.
Для сравнения опустим index
столбец
df = data_set.drop('index', 1)
Решение
Предлагаю использовать zip
иmap
list(zip(*map(df.get, df)))
[('2012-02-17', 24.75, 25.03),
('2012-02-16', 25.0, 25.07),
('2012-02-15', 24.99, 25.15),
('2012-02-14', 24.68, 25.05),
('2012-02-13', 24.62, 24.77),
('2012-02-10', 24.38, 24.61)]
Это также может быть гибким, если мы хотим иметь дело с определенным подмножеством столбцов. Предположим, что уже отображаемые столбцы являются желаемым подмножеством.
list(zip(*map(df.get, ['data_date', 'data_1', 'data_2'])))
[('2012-02-17', 24.75, 25.03),
('2012-02-16', 25.0, 25.07),
('2012-02-15', 24.99, 25.15),
('2012-02-14', 24.68, 25.05),
('2012-02-13', 24.62, 24.77),
('2012-02-10', 24.38, 24.61)]
Что быстрее?
Выход records
происходит быстрее всего, за ним следуют асимптотически сходящиеся zipmap
иiter_tuples
Я воспользуюсь библиотекой simple_benchmarks
из этого поста
from simple_benchmark import BenchmarkBuilder
b = BenchmarkBuilder()
import pandas as pd
import numpy as np
def tuple_comp(df): return [tuple(x) for x in df.to_numpy()]
def iter_namedtuples(df): return list(df.itertuples(index=False))
def iter_tuples(df): return list(df.itertuples(index=False, name=None))
def records(df): return df.to_records(index=False).tolist()
def zipmap(df): return list(zip(*map(df.get, df)))
funcs = [tuple_comp, iter_namedtuples, iter_tuples, records, zipmap]
for func in funcs:
b.add_function()(func)
def creator(n):
return pd.DataFrame({"A": random.randint(n, size=n), "B": random.randint(n, size=n)})
@b.add_arguments('Rows in DataFrame')
def argument_provider():
for n in (10 ** (np.arange(4, 11) / 2)).astype(int):
yield n, creator(n)
r = b.run()
Проверить результаты
r.to_pandas_dataframe().pipe(lambda d: d.div(d.min(1), 0))
tuple_comp iter_namedtuples iter_tuples records zipmap
100 2.905662 6.626308 3.450741 1.469471 1.000000
316 4.612692 4.814433 2.375874 1.096352 1.000000
1000 6.513121 4.106426 1.958293 1.000000 1.316303
3162 8.446138 4.082161 1.808339 1.000000 1.533605
10000 8.424483 3.621461 1.651831 1.000000 1.558592
31622 7.813803 3.386592 1.586483 1.000000 1.515478
100000 7.050572 3.162426 1.499977 1.000000 1.480131
r.plot()
list(df.itertuples(index=False, name=None))