Я люблю эту проблему. Это классический вопрос на собеседовании, и в зависимости от того, как вы к нему относитесь, в конечном итоге вы найдете все более и более удачные решения. Конечно, можно сделать это быстрее, чем за O (n 2 ), и я перечислил здесь три различных способа, которыми вы можете подумать о проблеме. Надеюсь, это ответит на ваш вопрос!
Во-первых, решение «разделяй и властвуй». Посмотрим, сможем ли мы решить эту проблему, разделив входные данные пополам, решив проблему в каждом подмассиве, а затем объединив их вместе. Оказывается, мы действительно можем это сделать, и можем делать это эффективно! Интуиция такова. Если у нас один день, лучший вариант - купить в этот день, а затем продать его обратно в тот же день без прибыли. В противном случае разделите массив на две половины. Если мы подумаем о том, какой может быть оптимальный ответ, он должен быть в одном из трех мест:
- Правильная пара покупка / продажа происходит полностью в первой половине.
- Правильная пара покупка / продажа полностью происходит во второй половине.
- Правильная пара покупка / продажа встречается на обеих половинах - мы покупаем в первой половине, а продаем во второй половине.
Мы можем получить значения для (1) и (2), рекурсивно вызывая наш алгоритм на первой и второй половинах. Для варианта (3) способом получения максимальной прибыли будет покупка в самой низкой точке в первой половине и продажа в самой высокой точке во второй половине. Мы можем найти минимальное и максимальное значения в двух половинах, просто выполнив простое линейное сканирование по входу и найдя два значения. Это дает нам алгоритм со следующей повторяемостью:
T(1) <= O(1)
T(n) <= 2T(n / 2) + O(n)
Используя основную теорему для решения рекурсии, мы обнаруживаем, что это выполняется за время O (n lg n) и будет использовать пространство O (lg n) для рекурсивных вызовов. Мы только что обыграли наивное решение O (n 2 )!
Но ждать! Мы можем добиться большего, чем это. Обратите внимание, что единственная причина, по которой у нас есть член O (n) в нашем повторении, заключается в том, что нам пришлось сканировать весь ввод, пытаясь найти минимальное и максимальное значения в каждой половине. Поскольку мы уже рекурсивно исследуем каждую половину, возможно, мы сможем добиться большего, если рекурсия также вернет минимальные и максимальные значения, хранящиеся в каждой половине! Другими словами, наша рекурсия возвращает три вещи:
- Время покупки и продажи для максимизации прибыли.
- Минимальное общее значение в диапазоне.
- Максимальное значение в диапазоне.
Эти последние два значения могут быть вычислены рекурсивно, используя простую рекурсию, которую мы можем запустить одновременно с рекурсией для вычисления (1):
- Максимальные и минимальные значения одноэлементного диапазона - это именно тот элемент.
- Максимальные и минимальные значения диапазона из нескольких элементов можно найти, разделив входные данные пополам, найдя максимальные и минимальные значения каждой половины, а затем взяв их соответствующие максимальные и минимальные значения.
Если мы воспользуемся этим подходом, наше рекуррентное отношение теперь будет
T(1) <= O(1)
T(n) <= 2T(n / 2) + O(1)
Использование основной теоремы дает нам время выполнения O (n) с пространством O (lg n), что даже лучше, чем наше исходное решение!
Но подождите минутку - мы можем сделать даже лучше, чем это! Давайте подумаем о решении этой проблемы с помощью динамического программирования. Идея будет заключаться в следующем. Предположим, что мы знали ответ на проблему, посмотрев на первые k элементов. Можем ли мы использовать наши знания о (k + 1) -м элементе в сочетании с нашим начальным решением, чтобы решить проблему для первых (k + 1) элементов? Если это так, мы могли бы получить отличный алгоритм, решив проблему для первого элемента, затем для первых двух, затем для первых трех и т. Д., Пока мы не вычислим его для первых n элементов.
Давайте подумаем, как это сделать. Если у нас есть только один элемент, мы уже знаем, что это должна быть лучшая пара покупки / продажи. Теперь предположим, что мы знаем лучший ответ для первых k элементов, и посмотрим на (k + 1) -й элемент. Тогда единственный способ, которым это значение может создать решение лучше, чем то, что мы имели для первых k элементов, - это если разница между наименьшим из первых k элементов и этим новым элементом больше, чем самая большая разница, которую мы вычислили до сих пор. Итак, предположим, что, просматривая элементы, мы отслеживаем два значения - минимальное значение, которое мы видели до сих пор, и максимальную прибыль, которую мы могли бы получить только с первыми k элементами. Изначально минимальное значение, которое мы видели до сих пор, является первым элементом, а максимальная прибыль равна нулю. Когда мы видим новый элемент, Сначала мы обновляем нашу оптимальную прибыль, вычисляя, сколько мы могли бы заработать, купив по самой низкой цене, наблюдаемой до сих пор, и продав по текущей цене. Если это лучше, чем оптимальное значение, которое мы вычислили до сих пор, то мы обновляем оптимальное решение, чтобы оно было новой прибылью. Затем мы обновляем минимальный элемент, который мы видели до сих пор, чтобы он был минимальным из текущего наименьшего элемента и нового элемента.
Поскольку на каждом шаге мы выполняем только O (1) работу и посещаем каждый из n элементов ровно один раз, это занимает O (n) времени! Более того, он использует только вспомогательную память O (1). Это так хорошо, как мы уже сделали!
В качестве примера на ваших входных данных вот как может работать этот алгоритм. Числа между каждым из значений массива соответствуют значениям, удерживаемым алгоритмом в этой точке. На самом деле вы бы не стали хранить все это (это заняло бы O (n) памяти!), Но было бы полезно увидеть, как алгоритм развивается:
5 10 4 6 7
min 5 5 4 4 4
best (5,5) (5,10) (5,10) (5,10) (5,10)
Ответ: (5, 10)
5 10 4 6 12
min 5 5 4 4 4
best (5,5) (5,10) (5,10) (5,10) (4,12)
Ответ: (4, 12)
1 2 3 4 5
min 1 1 1 1 1
best (1,1) (1,2) (1,3) (1,4) (1,5)
Ответ: (1, 5)
Можем ли мы сделать лучше сейчас? К сожалению, не в асимптотическом смысле. Если мы используем время меньше O (n), мы не сможем просмотреть все числа на больших входных данных и, следовательно, не сможем гарантировать, что не пропустим оптимальный ответ (мы могли бы просто «спрятать» его в элементах, которые мы не смотрел). Кроме того, мы не можем использовать пространство меньше O (1). Могут быть некоторые оптимизации постоянных факторов, скрытых в нотации большого O, но в противном случае мы не можем ожидать найти какие-либо радикально лучшие варианты.
В целом это означает, что у нас есть следующие алгоритмы:
- Наивный: O (n 2 ) раз, O (1) пространство.
- Разделяй и властвуй: O (n lg n) раз, O (lg n) пространство.
- Оптимизированный принцип «разделяй и властвуй»: O (n) раз, O (lg n) пространство.
- Динамическое программирование: O (n) раз, O (1) пространство.
Надеюсь это поможет!
РЕДАКТИРОВАТЬ : Если вам интересно, я закодировал версию этих четырех алгоритмов для Python, чтобы вы могли поиграть с ними и оценить их относительную производительность. Вот код:
# Four different algorithms for solving the maximum single-sell profit problem,
# each of which have different time and space complexity. This is one of my
# all-time favorite algorithms questions, since there are so many different
# answers that you can arrive at by thinking about the problem in slightly
# different ways.
#
# The maximum single-sell profit problem is defined as follows. You are given
# an array of stock prices representing the value of some stock over time.
# Assuming that you are allowed to buy the stock exactly once and sell the
# stock exactly once, what is the maximum profit you can make? For example,
# given the prices
#
# 2, 7, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5
#
# The maximum profit you can make is 8, by buying when the stock price is 1 and
# selling when the stock price is 9. Note that while the greatest difference
# in the array is 9 (by subtracting 9 - 0), we cannot actually make a profit of
# 9 here because the stock price of 0 comes after the stock price of 9 (though
# if we wanted to lose a lot of money, buying high and selling low would be a
# great idea!)
#
# In the event that there's no profit to be made at all, we can always buy and
# sell on the same date. For example, given these prices (which might
# represent a buggy-whip manufacturer:)
#
# 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
#
# The best profit we can make is 0 by buying and selling on the same day.
#
# Let's begin by writing the simplest and easiest algorithm we know of that
# can solve this problem - brute force. We will just consider all O(n^2) pairs
# of values, and then pick the one with the highest net profit. There are
# exactly n + (n - 1) + (n - 2) + ... + 1 = n(n + 1)/2 different pairs to pick
# from, so this algorithm will grow quadratically in the worst-case. However,
# it uses only O(1) memory, which is a somewhat attractive feature. Plus, if
# our first intuition for the problem gives a quadratic solution, we can be
# satisfied that if we don't come up with anything else, we can always have a
# polynomial-time solution.
def BruteForceSingleSellProfit(arr):
# Store the best possible profit we can make; initially this is 0.
bestProfit = 0;
# Iterate across all pairs and find the best out of all of them. As a
# minor optimization, we don't consider any pair consisting of a single
# element twice, since we already know that we get profit 0 from this.
for i in range(0, len(arr)):
for j in range (i + 1, len(arr)):
bestProfit = max(bestProfit, arr[j] - arr[i])
return bestProfit
# This solution is extremely inelegant, and it seems like there just *has* to
# be a better solution. In fact, there are many better solutions, and we'll
# see three of them.
#
# The first insight comes if we try to solve this problem by using a divide-
# and-conquer strategy. Let's consider what happens if we split the array into
# two (roughly equal) halves. If we do so, then there are three possible
# options about where the best buy and sell times are:
#
# 1. We should buy and sell purely in the left half of the array.
# 2. We should buy and sell purely in the right half of the array.
# 3. We should buy in the left half of the array and sell in the right half of
# the array.
#
# (Note that we don't need to consider selling in the left half of the array
# and buying in the right half of the array, since the buy time must always
# come before the sell time)
#
# If we want to solve this problem recursively, then we can get values for (1)
# and (2) by recursively invoking the algorithm on the left and right
# subarrays. But what about (3)? Well, if we want to maximize our profit, we
# should be buying at the lowest possible cost in the left half of the array
# and selling at the highest possible cost in the right half of the array.
# This gives a very elegant algorithm for solving this problem:
#
# If the array has size 0 or size 1, the maximum profit is 0.
# Otherwise:
# Split the array in half.
# Compute the maximum single-sell profit in the left array, call it L.
# Compute the maximum single-sell profit in the right array, call it R.
# Find the minimum of the first half of the array, call it Min
# Find the maximum of the second half of the array, call it Max
# Return the maximum of L, R, and Max - Min.
#
# Let's consider the time and space complexity of this algorithm. Our base
# case takes O(1) time, and in our recursive step we make two recursive calls,
# one on each half of the array, and then does O(n) work to scan the array
# elements to find the minimum and maximum values. This gives the recurrence
#
# T(1) = O(1)
# T(n / 2) = 2T(n / 2) + O(n)
#
# Using the Master Theorem, this recurrence solves to O(n log n), which is
# asymptotically faster than our original approach! However, we do pay a
# (slight) cost in memory usage. Because we need to maintain space for all of
# the stack frames we use. Since on each recursive call we cut the array size
# in half, the maximum number of recursive calls we can make is O(log n), so
# this algorithm uses O(n log n) time and O(log n) memory.
def DivideAndConquerSingleSellProfit(arr):
# Base case: If the array has zero or one elements in it, the maximum
# profit is 0.
if len(arr) <= 1:
return 0;
# Cut the array into two roughly equal pieces.
left = arr[ : len(arr) / 2]
right = arr[len(arr) / 2 : ]
# Find the values for buying and selling purely in the left or purely in
# the right.
leftBest = DivideAndConquerSingleSellProfit(left)
rightBest = DivideAndConquerSingleSellProfit(right)
# Compute the best profit for buying in the left and selling in the right.
crossBest = max(right) - min(left)
# Return the best of the three
return max(leftBest, rightBest, crossBest)
# While the above algorithm for computing the maximum single-sell profit is
# better timewise than what we started with (O(n log n) versus O(n^2)), we can
# still improve the time performance. In particular, recall our recurrence
# relation:
#
# T(1) = O(1)
# T(n) = 2T(n / 2) + O(n)
#
# Here, the O(n) term in the T(n) case comes from the work being done to find
# the maximum and minimum values in the right and left halves of the array,
# respectively. If we could find these values faster than what we're doing
# right now, we could potentially decrease the function's runtime.
#
# The key observation here is that we can compute the minimum and maximum
# values of an array using a divide-and-conquer approach. Specifically:
#
# If the array has just one element, it is the minimum and maximum value.
# Otherwise:
# Split the array in half.
# Find the minimum and maximum values from the left and right halves.
# Return the minimum and maximum of these two values.
#
# Notice that our base case does only O(1) work, and our recursive case manages
# to do only O(1) work in addition to the recursive calls. This gives us the
# recurrence relation
#
# T(1) = O(1)
# T(n) = 2T(n / 2) + O(1)
#
# Using the Master Theorem, this solves to O(n).
#
# How can we make use of this result? Well, in our current divide-and-conquer
# solution, we split the array in half anyway to find the maximum profit we
# could make in the left and right subarrays. Could we have those recursive
# calls also hand back the maximum and minimum values of the respective arrays?
# If so, we could rewrite our solution as follows:
#
# If the array has size 1, the maximum profit is zero and the maximum and
# minimum values are the single array element.
# Otherwise:
# Split the array in half.
# Compute the maximum single-sell profit in the left array, call it L.
# Compute the maximum single-sell profit in the right array, call it R.
# Let Min be the minimum value in the left array, which we got from our
# first recursive call.
# Let Max be the maximum value in the right array, which we got from our
# second recursive call.
# Return the maximum of L, R, and Max - Min for the maximum single-sell
# profit, and the appropriate maximum and minimum values found from
# the recursive calls.
#
# The correctness proof for this algorithm works just as it did before, but now
# we never actually do a scan of the array at each step. In fact, we do only
# O(1) work at each level. This gives a new recurrence
#
# T(1) = O(1)
# T(n) = 2T(n / 2) + O(1)
#
# Which solves to O(n). We're now using O(n) time and O(log n) memory, which
# is asymptotically faster than before!
#
# The code for this is given below:
def OptimizedDivideAndConquerSingleSellProfit(arr):
# If the array is empty, the maximum profit is zero.
if len(arr) == 0:
return 0
# This recursive helper function implements the above recurrence. It
# returns a triple of (max profit, min array value, max array value). For
# efficiency reasons, we always reuse the array and specify the bounds as
# [lhs, rhs]
def Recursion(arr, lhs, rhs):
# If the array has just one element, we return that the profit is zero
# but the minimum and maximum values are just that array value.
if lhs == rhs:
return (0, arr[lhs], arr[rhs])
# Recursively compute the values for the first and latter half of the
# array. To do this, we need to split the array in half. The line
# below accomplishes this in a way that, if ported to other languages,
# cannot result in an integer overflow.
mid = lhs + (rhs - lhs) / 2
# Perform the recursion.
( leftProfit, leftMin, leftMax) = Recursion(arr, lhs, mid)
(rightProfit, rightMin, rightMax) = Recursion(arr, mid + 1, rhs)
# Our result is the maximum possible profit, the minimum of the two
# minima we've found (since the minimum of these two values gives the
# minimum of the overall array), and the maximum of the two maxima.
maxProfit = max(leftProfit, rightProfit, rightMax - leftMin)
return (maxProfit, min(leftMin, rightMin), max(leftMax, rightMax))
# Using our recursive helper function, compute the resulting value.
profit, _, _ = Recursion(arr, 0, len(arr) - 1)
return profit
# At this point we've traded our O(n^2)-time, O(1)-space solution for an O(n)-
# time, O(log n) space solution. But can we do better than this?
#
# To find a better algorithm, we'll need to switch our line of reasoning.
# Rather than using divide-and-conquer, let's see what happens if we use
# dynamic programming. In particular, let's think about the following problem.
# If we knew the maximum single-sell profit that we could get in just the first
# k array elements, could we use this information to determine what the
# maximum single-sell profit would be in the first k + 1 array elements? If we
# could do this, we could use the following algorithm:
#
# Find the maximum single-sell profit to be made in the first 1 elements.
# For i = 2 to n:
# Compute the maximum single-sell profit using the first i elements.
#
# How might we do this? One intuition is as follows. Suppose that we know the
# maximum single-sell profit of the first k elements. If we look at k + 1
# elements, then either the maximum profit we could make by buying and selling
# within the first k elements (in which case nothing changes), or we're
# supposed to sell at the (k + 1)st price. If we wanted to sell at this price
# for a maximum profit, then we would want to do so by buying at the lowest of
# the first k + 1 prices, then selling at the (k + 1)st price.
#
# To accomplish this, suppose that we keep track of the minimum value in the
# first k elements, along with the maximum profit we could make in the first
# k elements. Upon seeing the (k + 1)st element, we update what the current
# minimum value is, then update what the maximum profit we can make is by
# seeing whether the difference between the (k + 1)st element and the new
# minimum value is. Note that it doesn't matter what order we do this in; if
# the (k + 1)st element is the smallest element so far, there's no possible way
# that we could increase our profit by selling at that point.
#
# To finish up this algorithm, we should note that given just the first price,
# the maximum possible profit is 0.
#
# This gives the following simple and elegant algorithm for the maximum single-
# sell profit problem:
#
# Let profit = 0.
# Let min = arr[0]
# For k = 1 to length(arr):
# If arr[k] < min, set min = arr[k]
# If profit < arr[k] - min, set profit = arr[k] - min
#
# This is short, sweet, and uses only O(n) time and O(1) memory. The beauty of
# this solution is that we are quite naturally led there by thinking about how
# to update our answer to the problem in response to seeing some new element.
# In fact, we could consider implementing this algorithm as a streaming
# algorithm, where at each point in time we maintain the maximum possible
# profit and then update our answer every time new data becomes available.
#
# The final version of this algorithm is shown here:
def DynamicProgrammingSingleSellProfit(arr):
# If the array is empty, we cannot make a profit.
if len(arr) == 0:
return 0
# Otherwise, keep track of the best possible profit and the lowest value
# seen so far.
profit = 0
cheapest = arr[0]
# Iterate across the array, updating our answer as we go according to the
# above pseudocode.
for i in range(1, len(arr)):
# Update the minimum value to be the lower of the existing minimum and
# the new minimum.
cheapest = min(cheapest, arr[i])
# Update the maximum profit to be the larger of the old profit and the
# profit made by buying at the lowest value and selling at the current
# price.
profit = max(profit, arr[i] - cheapest)
return profit
# To summarize our algorithms, we have seen
#
# Naive: O(n ^ 2) time, O(1) space
# Divide-and-conquer: O(n log n) time, O(log n) space
# Optimized divide-and-conquer: O(n) time, O(log n) space
# Dynamic programming: O(n) time, O(1) space