Предыдущие ответы хороши, я просто хотел бы поделиться служебной функцией, которую я написал для выбора тензоров из графика:
def get_graph_op(graph, and_conds=None, op='and', or_conds=None):
"""Selects nodes' names in the graph if:
- The name contains all items in and_conds
- OR/AND depending on op
- The name contains any item in or_conds
Condition starting with a "!" are negated.
Returns all ops if no optional arguments is given.
Args:
graph (tf.Graph): The graph containing sought tensors
and_conds (list(str)), optional): Defaults to None.
"and" conditions
op (str, optional): Defaults to 'and'.
How to link the and_conds and or_conds:
with an 'and' or an 'or'
or_conds (list(str), optional): Defaults to None.
"or conditions"
Returns:
list(str): list of relevant tensor names
"""
assert op in {'and', 'or'}
if and_conds is None:
and_conds = ['']
if or_conds is None:
or_conds = ['']
node_names = [n.name for n in graph.as_graph_def().node]
ands = {
n for n in node_names
if all(
cond in n if '!' not in cond
else cond[1:] not in n
for cond in and_conds
)}
ors = {
n for n in node_names
if any(
cond in n if '!' not in cond
else cond[1:] not in n
for cond in or_conds
)}
if op == 'and':
return [
n for n in node_names
if n in ands.intersection(ors)
]
elif op == 'or':
return [
n for n in node_names
if n in ands.union(ors)
]
Итак, если у вас есть график с операциями:
['model/classifier/dense/kernel',
'model/classifier/dense/kernel/Assign',
'model/classifier/dense/kernel/read',
'model/classifier/dense/bias',
'model/classifier/dense/bias/Assign',
'model/classifier/dense/bias/read',
'model/classifier/dense/MatMul',
'model/classifier/dense/BiasAdd',
'model/classifier/ArgMax/dimension',
'model/classifier/ArgMax']
Затем бег
get_graph_op(tf.get_default_graph(), ['dense', '!kernel'], 'or', ['Assign'])
возвращает:
['model/classifier/dense/kernel/Assign',
'model/classifier/dense/bias',
'model/classifier/dense/bias/Assign',
'model/classifier/dense/bias/read',
'model/classifier/dense/MatMul',
'model/classifier/dense/BiasAdd']
if "Variable" in n.op
в конце понимания.