Ответы:
ОБНОВЛЕНИЕ: использование панд 0.22.0
В новых версиях Pandas появились новые методы DataFrame.isna () и DataFrame.notna ().
In [71]: df
Out[71]:
a b c
0 NaN 7.0 0
1 0.0 NaN 4
2 2.0 NaN 4
3 1.0 7.0 0
4 1.0 3.0 9
5 7.0 4.0 9
6 2.0 6.0 9
7 9.0 6.0 4
8 3.0 0.0 9
9 9.0 0.0 1
In [72]: df.isna().any()
Out[72]:
a True
b True
c False
dtype: bool
как список столбцов:
In [74]: df.columns[df.isna().any()].tolist()
Out[74]: ['a', 'b']
чтобы выбрать эти столбцы (содержащие хотя бы одно NaN
значение):
In [73]: df.loc[:, df.isna().any()]
Out[73]:
a b
0 NaN 7.0
1 0.0 NaN
2 2.0 NaN
3 1.0 7.0
4 1.0 3.0
5 7.0 4.0
6 2.0 6.0
7 9.0 6.0
8 3.0 0.0
9 9.0 0.0
СТАРЫЙ ответ:
Попробуйте использовать isnull () :
In [97]: df
Out[97]:
a b c
0 NaN 7.0 0
1 0.0 NaN 4
2 2.0 NaN 4
3 1.0 7.0 0
4 1.0 3.0 9
5 7.0 4.0 9
6 2.0 6.0 9
7 9.0 6.0 4
8 3.0 0.0 9
9 9.0 0.0 1
In [98]: pd.isnull(df).sum() > 0
Out[98]:
a True
b True
c False
dtype: bool
или, как @root предложил более ясную версию:
In [5]: df.isnull().any()
Out[5]:
a True
b True
c False
dtype: bool
In [7]: df.columns[df.isnull().any()].tolist()
Out[7]: ['a', 'b']
выбрать подмножество - все столбцы, содержащие хотя бы одно NaN
значение:
In [31]: df.loc[:, df.isnull().any()]
Out[31]:
a b
0 NaN 7.0
1 0.0 NaN
2 2.0 NaN
3 1.0 7.0
4 1.0 3.0
5 7.0 4.0
6 2.0 6.0
7 9.0 6.0
8 3.0 0.0
9 9.0 0.0
df.columns[df.isin['xxx'].any()].tolist()
df.columns[df.eq(search_for_value).any()].tolist()
isna
, notna
?
В наборах данных, имеющих большое количество столбцов, еще лучше увидеть, сколько столбцов содержат нулевые значения, а сколько нет.
print("No. of columns containing null values")
print(len(df.columns[df.isna().any()]))
print("No. of columns not containing null values")
print(len(df.columns[df.notna().all()]))
print("Total no. of columns in the dataframe")
print(len(df.columns))
Например, в моем фрейме данных он содержал 82 столбца, из которых 19 содержали хотя бы одно нулевое значение.
Кроме того, вы также можете автоматически удалять столбцы и строки в зависимости от того, какие значения больше нуля.
Вот код, который делает это разумно:
df = df.drop(df.columns[df.isna().sum()>len(df.columns)],axis = 1)
df = df.dropna(axis = 0).reset_index(drop=True)
Примечание. Приведенный выше код удаляет все ваши нулевые значения. Если вы хотите нулевые значения, обработайте их раньше.
Это сработало для меня,
1. Для получения столбцов, имеющих как минимум 1 нулевое значение. (имена столбцов)
data.columns[data.isnull().any()]
2. Для получения столбцов с числом, имеющим как минимум 1 нулевое значение.
data[data.columns[data.isnull().any()]].isnull().sum()
[Необязательно] 3. Для получения процента от нуля.
data[data.columns[data.isnull().any()]].isnull().sum() * 100 / data.shape[0]
df.isna().any()[lambda x: x]
работает на меня