Я хочу знать, как можно заполнить двумерный массив numpy нулями, используя python 2.6.6 с numpy версии 1.5.0. Сожалею! Но это мои ограничения. Поэтому я не могу использовать np.pad
. Например, я хочу заполнить a
нулями, чтобы форма совпадала b
. Причина, по которой я хочу это сделать, заключается в том, что я могу:
b-a
такой, что
>>> a
array([[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.]])
>>> b
array([[ 3., 3., 3., 3., 3., 3.],
[ 3., 3., 3., 3., 3., 3.],
[ 3., 3., 3., 3., 3., 3.],
[ 3., 3., 3., 3., 3., 3.]])
>>> c
array([[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0]])
Единственный способ, которым я могу это сделать, - это добавить, но это кажется довольно уродливым. возможно ли использовать более чистое решение b.shape
?
Edit, спасибо за ответ MSeiferts. Пришлось немного почистить, и вот что у меня получилось:
def pad(array, reference_shape, offsets):
"""
array: Array to be padded
reference_shape: tuple of size of ndarray to create
offsets: list of offsets (number of elements must be equal to the dimension of the array)
will throw a ValueError if offsets is too big and the reference_shape cannot handle the offsets
"""
# Create an array of zeros with the reference shape
result = np.zeros(reference_shape)
# Create a list of slices from offset to offset + shape in each dimension
insertHere = [slice(offsets[dim], offsets[dim] + array.shape[dim]) for dim in range(array.ndim)]
# Insert the array in the result at the specified offsets
result[insertHere] = array
return result
padded = np.zeros(b.shape)
padded[tuple(slice(0,n) for n in a.shape)] = a