Недавно я рассмотрел интересную реализацию классификации сверточного текста . Однако весь код TensorFlow, который я рассмотрел, использует случайные (не предварительно обученные) векторы внедрения, например следующие:
with tf.device('/cpu:0'), tf.name_scope("embedding"):
W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
Кто-нибудь знает, как использовать результаты Word2vec или предварительно обученного встраивания слов в GloVe вместо случайного?