Текущее выбранное решение дает неверные результаты. Чтобы правильно решить эту проблему, мы можем выполнить левое соединение от df1
до df2
, убедившись, что сначала получим только уникальные строки для df2
.
Во-первых, нам нужно изменить исходный DataFrame, чтобы добавить строку с данными [3, 10].
df1 = pd.DataFrame(data = {'col1' : [1, 2, 3, 4, 5, 3],
'col2' : [10, 11, 12, 13, 14, 10]})
df2 = pd.DataFrame(data = {'col1' : [1, 2, 3],
'col2' : [10, 11, 12]})
df1
col1 col2
0 1 10
1 2 11
2 3 12
3 4 13
4 5 14
5 3 10
df2
col1 col2
0 1 10
1 2 11
2 3 12
Выполните левое соединение, исключив дубликаты, df2
чтобы каждый ряд df1
объединялся с ровно 1 строкой df2
. Используйте параметр, indicator
чтобы получить дополнительный столбец, в котором указано, из какой таблицы была получена строка.
df_all = df1.merge(df2.drop_duplicates(), on=['col1','col2'],
how='left', indicator=True)
df_all
col1 col2 _merge
0 1 10 both
1 2 11 both
2 3 12 both
3 4 13 left_only
4 5 14 left_only
5 3 10 left_only
Создайте логическое условие:
df_all['_merge'] == 'left_only'
0 False
1 False
2 False
3 True
4 True
5 True
Name: _merge, dtype: bool
Почему другие решения неверны
Несколько решений допускают одну и ту же ошибку - они только проверяют, что каждое значение независимо в каждом столбце, а не вместе в одной строке. Добавление последней строки, которая является уникальной, но имеет значения из обоих столбцов, df2
выявляет ошибку:
common = df1.merge(df2,on=['col1','col2'])
(~df1.col1.isin(common.col1))&(~df1.col2.isin(common.col2))
0 False
1 False
2 False
3 True
4 True
5 False
dtype: bool
Это решение дает тот же неправильный результат:
df1.isin(df2.to_dict('l')).all(1)