Решение проблемы отсутствия библиотек BLAS / LAPACK для установок SciPy в 64-битной Windows 7 описано здесь:
http://www.scipy.org/scipylib/building/windows.html
Установить Anaconda намного проще, но вы все равно не получите поддержку Intel MKL или GPU, не заплатив за нее (они есть в дополнениях MKL Optimization и Accelerate для Anaconda - я не уверен, что они также используют PLASMA и MAGMA) , С оптимизацией MKL Numpy превзошел IDL в больших матричных вычислениях в 10 раз. MATLAB использует библиотеку Intel MKL для внутреннего использования и поддерживает вычисления на GPU, поэтому можно использовать ее по цене, если вы студент (50 долларов за MATLAB + 10 долларов за Parallel Computing Toolbox). Если вы получаете бесплатную пробную версию Intel Parallel Studio, она поставляется с библиотекой MKL, а также с компиляторами C ++ и FORTRAN, которые пригодятся вам, если вы хотите установить BLAS и LAPACK из MKL или ATLAS в Windows:
http://icl.cs.utk.edu/lapack-for-windows/lapack/
Parallel Studio также поставляется с библиотекой Intel MPI, полезной для кластерных вычислительных приложений и их новейших процессоров Xeon. Хотя процесс создания BLAS и LAPACK с оптимизацией MKL не является тривиальным, его преимущества для Python и R довольно велики, как описано на этом вебинаре Intel:
https://software.intel.com/en-us/articles/powered-by-mkl-accelerating-numpy-and-scipy-performance-with-intel-mkl-python
Anaconda и Enthought создали бизнес, сделав эту функциональность и несколько других вещей проще в развертывании. Тем не менее, он находится в свободном доступе для тех, кто хочет сделать немного работы (и немного обучения).
Для тех, кто использует R, теперь вы можете получить оптимизированные MKL BLAS и LAPACK бесплатно с R Open от Revolution Analytics.
РЕДАКТИРОВАТЬ: Anaconda Python теперь поставляется с оптимизацией MKL, а также поддержкой ряда других оптимизаций библиотек Intel через дистрибутив Intel Python. Однако поддержка GPU для Anaconda в библиотеке Accelerate (ранее известной как NumbaPro) по-прежнему превышает 10 тысяч долларов США! Лучшими альтернативами для этого являются, вероятно, PyCUDA и scikit-cuda, так как Copperhead (по сути, бесплатная версия Anaconda Accelerate), к сожалению, прекратил разработку пять лет назад. Это можно найти здесь, если кто-то хочет подобрать, где они остановились.