Pandas Groupby Диапазон ценностей


92

Есть ли в пандах простой метод для вызова groupbyдиапазона приращений значений? Например, в приведенном ниже примере я могу разбить и сгруппировать столбец Bс 0.155приращением, чтобы, например, первая пара групп в столбце была Bразделена на диапазоны между '0 - 0,155, 0,155 - 0,31 ...

import numpy as np
import pandas as pd
df=pd.DataFrame({'A':np.random.random(20),'B':np.random.random(20)})

     A         B
0  0.383493  0.250785
1  0.572949  0.139555
2  0.652391  0.401983
3  0.214145  0.696935
4  0.848551  0.516692

В качестве альтернативы я мог бы сначала классифицировать данные по этим приращениям в новый столбец, а затем использовать groupbyдля определения любой соответствующей статистики, которая может быть применима в столбце A?

Ответы:


132

Вам может быть интересно pd.cut:

>>> df.groupby(pd.cut(df["B"], np.arange(0, 1.0+0.155, 0.155))).sum()
                      A         B
B                                
(0, 0.155]     2.775458  0.246394
(0.155, 0.31]  1.123989  0.471618
(0.31, 0.465]  2.051814  1.882763
(0.465, 0.62]  2.277960  1.528492
(0.62, 0.775]  1.577419  2.810723
(0.775, 0.93]  0.535100  1.694955
(0.93, 1.085]       NaN       NaN

[7 rows x 2 columns]

11
Могу ли я сделать это для нескольких измерений? По сути, группировка по двум значениям одновременно?
madsthaks

13

Попробуй это:

df = df.sort('B')
bins =  np.arange(0,1.0,0.155)
ind = np.digitize(df['B'],bins)

print df.groupby(ind).head()

Конечно, вы можете использовать любую функцию в группах, а не только head.

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.