Другой пример:
import numpy as np
import pandas as pd
""" This just creates a list of touples, and each element of the touple is an array"""
a = [ (np.random.randint(1,10,10), np.array([0,1,2,3,4,5,6,7,8,9])) for i in
range(0,10) ]
""" Panda DataFrame will allocate each of the arrays , contained as a touple
element , as column"""
df = pd.DataFrame(data =a,columns=['random_num','sequential_num'])
В общем, секрет состоит в том, чтобы разместить данные в форме a = [(array_11, array_12, ..., array_1n), ..., (array_m1, array_m2, ..., array_mn)] и panda DataFrame упорядочит данные в n столбцах массивов. Конечно, вместо элементов можно использовать массивы массивов, в этом случае форма будет иметь вид: a = [[array_11, array_12, ..., array_1n], ..., [array_m1, array_m2, ..., array_mn ]]
Это результат, если вы напечатаете (df) из приведенного выше кода:
random_num sequential_num
0 [7, 9, 2, 2, 5, 3, 5, 3, 1, 4] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
1 [8, 7, 9, 8, 1, 2, 2, 6, 6, 3] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
2 [3, 4, 1, 2, 2, 1, 4, 2, 6, 1] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
3 [3, 1, 1, 1, 6, 2, 8, 6, 7, 9] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
4 [4, 2, 8, 5, 4, 1, 2, 2, 3, 3] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
5 [3, 2, 7, 4, 1, 5, 1, 4, 6, 3] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
6 [5, 7, 3, 9, 7, 8, 4, 1, 3, 1] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
7 [7, 4, 7, 6, 2, 6, 3, 2, 5, 6] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
8 [3, 1, 6, 3, 2, 1, 5, 2, 2, 9] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
9 [7, 2, 3, 9, 5, 5, 8, 6, 9, 8] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Другой вариант приведенного выше примера:
b = [ (i,"text",[14, 5,], np.array([0,1,2,3,4,5,6,7,8,9])) for i in
range(0,10) ]
df = pd.DataFrame(data=b,columns=['Number','Text','2Elemnt_array','10Element_array'])
Вывод df:
Number Text 2Elemnt_array 10Element_array
0 0 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
1 1 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
2 2 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
3 3 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
4 4 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
5 5 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
6 6 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
7 7 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
8 8 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
9 9 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Если вы хотите добавить другие столбцы массивов, то:
df['3Element_array']=[([1,2,3]),([1,2,3]),([1,2,3]),([1,2,3]),([1,2,3]),([1,2,3]),([1,2,3]),([1,2,3]),([1,2,3]),([1,2,3])]
Окончательный вывод df будет:
Number Text 2Elemnt_array 10Element_array 3Element_array
0 0 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3]
1 1 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3]
2 2 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3]
3 3 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3]
4 4 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3]
5 5 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3]
6 6 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3]
7 7 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3]
8 8 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3]
9 9 text [14, 5] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3]