Я пробовал xlrd, pandas, openpyxl и другие подобные библиотеки, и все они, кажется, занимают экспоненциальное время по мере увеличения размера файла, когда он читает весь файл. Другие решения, упомянутые выше, где они использовали on_demand, не работали для меня. Если вы просто хотите получить имена листов изначально, следующая функция работает для файлов xlsx.
def get_sheet_details(file_path):
sheets = []
file_name = os.path.splitext(os.path.split(file_path)[-1])[0]
# Make a temporary directory with the file name
directory_to_extract_to = os.path.join(settings.MEDIA_ROOT, file_name)
os.mkdir(directory_to_extract_to)
# Extract the xlsx file as it is just a zip file
zip_ref = zipfile.ZipFile(file_path, 'r')
zip_ref.extractall(directory_to_extract_to)
zip_ref.close()
# Open the workbook.xml which is very light and only has meta data, get sheets from it
path_to_workbook = os.path.join(directory_to_extract_to, 'xl', 'workbook.xml')
with open(path_to_workbook, 'r') as f:
xml = f.read()
dictionary = xmltodict.parse(xml)
for sheet in dictionary['workbook']['sheets']['sheet']:
sheet_details = {
'id': sheet['@sheetId'],
'name': sheet['@name']
}
sheets.append(sheet_details)
# Delete the extracted files directory
shutil.rmtree(directory_to_extract_to)
return sheets
Поскольку все xlsx являются в основном заархивированными файлами, мы извлекаем базовые данные xml и читаем имена листов непосредственно из книги, что занимает доли секунды по сравнению с функциями библиотеки.
Бенчмаркинг: (для файла 6 МБ xlsx с 4 листами)
Панды, xlrd: 12 секунд
openpyxl: 24 секунды
Предлагаемый метод: 0,4 секунды
Поскольку моим требованием было просто чтение имен листов, ненужные накладные расходы на чтение все время доставляли мне неприятности, поэтому я выбрал этот путь.
ExcelFile
? Также, скажем, я просматриваю список листов и решаю загрузить N из них, должен ли я в этот момент вызыватьread_excel
(новый интерфейс) для каждого листа или придерживатьсяx1.parse
?