На этот вопрос уже был дан ответ, но я считаю, что было бы хорошо добавить несколько полезных методов, которые ранее не обсуждались, и сравнить все методы, предложенные на данный момент, с точки зрения производительности.
Вот несколько полезных решений этой проблемы в порядке увеличения производительности.
Это простой str.format
подход.
df['baz'] = df.agg('{0[bar]} is {0[foo]}'.format, axis=1)
df
foo bar baz
0 a 1 1 is a
1 b 2 2 is b
2 c 3 3 is c
Здесь также можно использовать форматирование f-строки:
df['baz'] = df.agg(lambda x: f"{x['bar']} is {x['foo']}", axis=1)
df
foo bar baz
0 a 1 1 is a
1 b 2 2 is b
2 c 3 3 is c
char.array
конкатенация на основе
Преобразуйте столбцы, чтобы chararrays
объединить их как , а затем сложите их вместе.
a = np.char.array(df['bar'].values)
b = np.char.array(df['foo'].values)
df['baz'] = (a + b' is ' + b).astype(str)
df
foo bar baz
0 a 1 1 is a
1 b 2 2 is b
2 c 3 3 is c
Я не могу переоценить, насколько недооценено понимание списков в пандах.
df['baz'] = [str(x) + ' is ' + y for x, y in zip(df['bar'], df['foo'])]
В качестве альтернативы, использование str.join
для concat (также будет лучше масштабироваться):
df['baz'] = [
' '.join([str(x), 'is', y]) for x, y in zip(df['bar'], df['foo'])]
df
foo bar baz
0 a 1 1 is a
1 b 2 2 is b
2 c 3 3 is c
Понимание списков превосходит манипуляции со строками, потому что строковые операции по своей природе трудно векторизовать, а большинство «векторизованных» функций pandas в основном являются оболочками вокруг циклов. Я много писал об этой теме в цикле For с пандами - когда мне это нужно? . В общем, если вам не нужно беспокоиться о выравнивании индекса, используйте понимание списка при работе со строками и операциями регулярных выражений.
Приведенный выше список по умолчанию не обрабатывает NaN. Однако вы всегда можете написать функцию, оборачивающую попытку, кроме случаев, когда вам нужно ее обработать.
def try_concat(x, y):
try:
return str(x) + ' is ' + y
except (ValueError, TypeError):
return np.nan
df['baz'] = [try_concat(x, y) for x, y in zip(df['bar'], df['foo'])]
perfplot
Измерения производительности
График, созданный с помощью perfplot . Вот полный листинг кода .
Функции
def brenbarn(df):
return df.assign(baz=df.bar.map(str) + " is " + df.foo)
def danielvelkov(df):
return df.assign(baz=df.apply(
lambda x:'%s is %s' % (x['bar'],x['foo']),axis=1))
def chrimuelle(df):
return df.assign(
baz=df['bar'].astype(str).str.cat(df['foo'].values, sep=' is '))
def vladimiryashin(df):
return df.assign(baz=df.astype(str).apply(lambda x: ' is '.join(x), axis=1))
def erickfis(df):
return df.assign(
baz=df.apply(lambda x: f"{x['bar']} is {x['foo']}", axis=1))
def cs1_format(df):
return df.assign(baz=df.agg('{0[bar]} is {0[foo]}'.format, axis=1))
def cs1_fstrings(df):
return df.assign(baz=df.agg(lambda x: f"{x['bar']} is {x['foo']}", axis=1))
def cs2(df):
a = np.char.array(df['bar'].values)
b = np.char.array(df['foo'].values)
return df.assign(baz=(a + b' is ' + b).astype(str))
def cs3(df):
return df.assign(
baz=[str(x) + ' is ' + y for x, y in zip(df['bar'], df['foo'])])